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Fusion at General Atomics:

Major Contributions in Five Areas

Inertial Fusion Technology
targets for ICF

* ITER Components
Central Solenoid Manufacture

* Theory and Computation

* DIII-D Program

 Fusion Nuclear Science
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GA Has a Long History Providing

Inertial Confinement Fusion Targets

- ICF target fabrication Inertial Fu5|n Technologies at General Atomics

support, since 1991: | | \W%
— Target fab & , 10 W ¥
characterization techniques E >

— Target cryogenic systems
— Deliver targets

 GA is single largest supplier
of targets
— ~1000’ s targets/year
— Targets made for LLNL, LANL,
SNL, AWE, CEA, Japan IFE target contributors
— IFT Staff ~115 (development) 2

 DOE and General Atomics’
investments have built a unique
target facility for the U. S.
— Strong collaboration with labs

creates a cenftral hub for target
fab
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GA Inertial Fusion Technology is Developing

Leading Edge Capabilities as a Target Supplier

« Continued improvement and efficiency with
modern manufacturing methods

— Automation and robotics for machining and
characterization

— Reduces fabrication and metrology time
— Reduces cost — Yon the pathway” to IFE
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* Preparing for Inertial Fusion Energy Targets

— Increased automation = increased volume,
reduced cost

— Component manufacturing and assembly & %8

« GA IFT prepares advanced targets for
NIF, Z, and Omega

— Develop, and supply components for
the NIF cryogenic target

- Developing ulira-fast x-ray imaging
diagnostics for Omega/EP and others

Dilation X-ray Robotic assembly
Imager and characterization
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General Atomics is Manufacturing the

ITER Superconducting Central Solenoid

Upper feeders
(cryo, electrical connections)

Tie plate

50 mm

Six modules plus structure ~900 tonnes

Each module weighing 110 tonnes has 560 turns (6.5km of conductor)
Nb.Sn CICC Conductor supplied by JAEA in Tkm lengths

Project duration is seven years,
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GA Theory and Computational Science Division

Developing Fundamental Understanding of Fusion Plasmas

- Advances in analytic theory and
world class numerical tools, eg
— GYRO: electromagnetic turbulence
— M3D-CI, ELITE, GATO: core/edge MHD
— NEO: neoclassical fransport

- Extensive validation with DIII-D
and other experiments builds

confidence in understanding
Hierarchical validation, eg

— Turbulence simulations compared to
measurements across multiple
spatiotemporal scales and multiple
channels, and comparisons of
predicted and observed transport

— Predicted ELM structure and onset
conditions compared to multiple high
resolution measurements
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GA Theory and Computational Science Division

Developing Predictive Capability for DIII-D, ITER and Beyond

Comparison of EPED Model to 270 Cases on 5 Tokamaks

- Validated simulation and theory used to R
develop predictive models. eg S | oibanan =
— TGLF: particle, heat and momentum £ [ % CMod (10 2
transport 2 L reouns ke
— EPED: structure of H-Mode pedestal ot Jaee IR ]
Models extensively tested on DIlI-D 3 | e
and other tokamaks 3 e
Combining these models allows performance %
prediction and optimization for DIII-D, ITER... T e T

. . EPED Predicted Pedestal Height (kPa)
« Developing Understanding Used

to Address Key Fusion Challenges ,_L LM
— Disruptions and runaway electrons ol ===
« Assessing ITER loads and mitigation

technigques
— ELM Control

« Developing predictive understanding of
RMP ELM control and QH mode
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Sirong parinerShlp bei’ween Fig. 2. (Left) Fast camera measurement of synchrotron radiation from a runaway beam in DIII-D.
(Right) Synchrotron radiation brightness from a simulation with nearly 2000 electron orbits. Field lines
GA Theory Clnd DIII-D Progrqm are superimposed.
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DIlI-D is Advancing the Physics Basis Needed

to Support Fusion Energy Development

Address physics and operational
issues critical to ITER's success

Develop the physics basis for
steady-state operation required
for efficient power production
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DIlI-D is Playing a Lead U.S. Role

in Preparation for ITER

Addressing design and operational issues for ITER

 Develop reliable plasma termination
systems: runaway electron control

« Control Erosion from pulsed heat loads
(ELMs) using 3D fields and pellets

 Develop ITER relevant plasma control to
avoid early discharge termination: N v

— Steerable microwave for tearing modes w/
— Locked modes and error field correction

 Develop ITER relevant, eleciron heated
scenarios, T.~T,, low torque, & non-nuclear

- Evaluate and control heat flux with new
measurements, and new configurations

. . . . DIlI-D: U.S.’s ITER Simulator
Training U.S. scientists and engineers for ~1/4 size ITER Prototype

leadership roles in ITER

DIlI-D priorities developed in consultation with ITER Organization and ITPA
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DIll-D Program Targets Provide Physics Basis

for Disruption Mitigation Solutions

Sustained Runaway

- Develop innovative techniques Channel

for runaway electron
measurement, control, and
dissipation

« Assess efficacy of massive
particle delivery techniques

» Characterize impact of thermal,
magnetic, and runaway loads

on internal components
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DIlI-D Research Has Increased Confidence in Ability to

Achieve RMP ELM Suppression on ITER

* ELM suppression operating space * Significant advances in physics
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DIlI-D is Demonstirating Alternate

ELM Control Techniques

Pellet pacing in ITER baseline
scenario yields 12x lower ELM
divertor heat pulse

ELM-free QH-mode Extended
to ITER Relevant Torque Using
External 3D Coils
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foelet X Adg,y, = const QH-mode is an attractive

candidate scenario for ITER
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DIlI-D is Proposing Modest Upgrades in 3D Field Capability to

Advance Scientific Understanding and Optimize Performance

* Proposed upgrades will enable enhanced physics capabilities:

— Power Supplies

* Increased amplitude perturbation during rotation
— New coil array

» Broader spectrum (n=1-4) of applied fields

* n=1-4rotatable
— New coil array + power supplies

* Multi-mode control

- Imaging enabled by rotating perturbation across fixed diagnostics

 QH-mode with increasing NBI torque may be possible with
increased NTV torque from new coil set

Upgrade provides scientific understanding and exirapolation to ITER
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Burning Plasma Regimes Access

Different Energy Transport Processes

- Burning plasmas are heated Turbulent electron ||
fransport ‘switched on

by fusion o’ s by electron heating:
— Primarily heat electrons

 Microwaves heat electrons
similar to fusion o’ s

— Relevant T, collisions,
rotation and fuelling

* Relevant turbulence and
transport can be evaluated
with eleciron heating

2000 2100 2200 2300
Time (msec)

Microwave upgrade (~ 8 MW to 15 MW) will access
burning plasma relevant transport regimes
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DIlI-D is Advancing the Physics Basis Needed

for a Fusion Nuclear Science Facility and DEMO
* Provide the basis for steady state operation

-  Prepare high power boundary solutions
consistent with high performance core

- Develop control for disruption-free operation

Inform the decision on FNSF configuration

FNSF-AT

Develop the physics basis for
steady-state operation required
for efficient power production
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Controlling Current Distribution is Key to

Steady State High Performance Plasma

Scaled Fusion Power Versus Self-Driven Current Fraction

Goal: High pressure + High self-driven current w0 /
~ i By 35 ATW‘“."WB" i
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 Theory & experiment show current must be distributed LI
off-axis to achieve optimized steady-state solutions
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Off-axis nevtral beams & microwave driven currents provide off-axis current
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DIlI-D Nevutral Beam Successfully Modified for Off- Axis

NBI

Un-Tilted
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Injection, Providing H&CD for Physics Studies

Measured Fast lon CXR Emission
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Off-Axis NBI Produces Broad Current & Pressure Profiles

with Sustained q,,,,>2 for Higher g, Stability Limits

Ideal-wall n=1 gy limits calculated by DCON

On-Axis NBI With off-Axis NBI
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* Qmin~2 avoids 2/1 tearing modes

- Off-axis NBl broadens current and pressure profiles

- Plasmas have higher predicted stability limits (g, ~4)
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Evaluating Options for a Nuclear Fusion Science

Facility to Operate in Parallel with ITER

FNSF-AT FNSF-ST = |

Objectives
 FNSF + ITER informs DEMO design choices
e Q=10in ITER leads to DEMO construction

* Modest effort funded by GA

« Evaluating mission elements, technical readiness, and risks
— Supporting community effort (led by D. Meade)

* Developing self-consistent scenarios for FNSF-AT
— Steady-State with ECCD only

- TBR > ]] , H98y2~] .2, BN:3'7' st~70%
— Manageable peak divertor heat flux based on SOLPS and experiments

* Developing a staged approach
— Demountable cooled copper coils

— Remote maintainable with removable blankets, divertor, efc.
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