

Smaller & Sooner:

How a new generation of superconductors can accelerate fusion's development

Dennis Whyte

Z. Hartwig, C. Haakonsen, L. Bromberg, H. Barnard, G. Olynyk, M. Greenwald, E. Marmar,

MIT PSFC

& Students of 22.63 Fusion Engineering

Fusion Power Associates

Washington DC December 2012

Fusion's development is impeded by its large single-unit cost

- The overnight cost of a fission power plant is \sim \$4/W.
- First of kind fusion plants <u>at least \$10-20/W</u>
- Which implies that developing fusion reactors at ~GWe scale requires 10-20 G\$ "per try" e.g. ITER
- Chance of fusion *development* significantly improved if net thermal/electrical power produced at ~5-10 x smaller i.e. ~ 500 MW thermal.

|||;;

Steady-state tokamak reactor: robust and compact if the achievable B can be ~doubled from its present limitation of B~5-6 T to B~10 T

• Reactor/DEMO criteria?

1) Adequate fusion power areal density $P_f / A_{blanket} \ge 4 \ MW \ m^{-2}$ 2) High fusion (Q > 25) and electrical ($Q_e \sim 5$) gain.

- High fusion power density and thermal conversion are <u>not optional</u> E.g. It would take ITER ~ 1800 years to pay off its principle even if operating 24/7 and selling electricity at 10 c/kW-hr. Problem? P_{fusion} / A ~ 0.7 MW/m², water-cooled wall and 20B\$
- Robustly non-disruptive steady-state scenarios are also necessary
 - ▶ Plasma pressure (p_{th}) , determines the fusion power density $(~p_{th}^2)$, will be ~ 1 MPa in all reactor designs [1]
 - So energy density a factor of 4-5 larger than in ITER where damage from disruptions/instabilities seems already unacceptable.

The *development schedule* of fusion power would be greatly accelerated if '1st DEMO' <u>could be designed with two extra criteria</u> '1st DEMO' plant criteria

3) Smallest size/volume, total power output and expense, and,
4) For the leading tokamak concept, <u>robust</u> steady-state operation.

• The only way to satisfy all of four these criteria is to increase B which can be seen from the simplified relationships at fixed R/a*

$$\frac{P_f}{A_{blanket}} \sim \left(\frac{\beta_N^2}{q^2}\right) R B^4 \quad , \quad \left(\frac{\beta_N H}{q^2}\right) R^{1/2} B^3 \ge C_{Ignition}$$

Power density

Doubling B field to ~9-10 T solves the "Catch-22" of initial DEMOs

- #1: At standard B~5-6 T the bracketed "plasma physics" <u>must</u> be pushed to and past intrinsic operational limits (e.g. q*~2, Beta_N~5-6) in order to keep size reasonable, R<6 m.
- #2: Yet exceeding any operational limits becomes essentially unacceptable due to reactor pressure/energy density!
- Doubling the B field provides x10-16 to simultaneously decrease plasma physics /operational risk (bracketed terms) and size and cost (\$ ~ R²⁻³)

A new generation of superconductors developed over the last decade allow \sim doubling of B_{max} compared to standard NbSn

Sub-cooled high-temperature super-conductors have critical currents with very small degradation versus B field up to ~30 T

llii i

HTSC tapes can use intermediate T ~ 20K (H cooling) Design B primarily // to tape in high field regions

Plii

Recent MIT Design Effort* "Rules"

- Develop a *robust* conceptual design based on YBCO magnets of a high gain, net electricity producing magnetic fusion power plant at substantially reduced total thermal power ~ 500 MW (factor of ~5 reduction from typical designs).
 - No violation of basic core limits: kink, no-wall Troyon Beta, Greenwald to assure stable operation.
 - Fully non-inductive scenarios but robust external control
 - Minimize solid waste
 - Minimize capital cost ~ Surface area of plasma/blanket to assure best fusion economic outlook.
 - > Q_electric > 4

Acknowledgements

- 22.63 Design Course Students:
 S. Arsenyev, J. Ball, J. Goh, C. Kasten, P. Le, F. Mangiarotti,
 B. Nield, T. Palmer, J. Sierchio, B. Sorbom, C. Sung, D. Sutherland
- 22.63 Design Course Teaching Assistants: H. Barnard, C. Haakonsen, Z. Hartwig, G. Olynyk
- MIT professional staff:
 P. Bonoli, L. Bromberg, M. Greenwald, B. Lipshcultz, E. Marmar, J. Minervini, S. Wolfe

The limitation in B field is set by structural stress limits

- **B**_{coil,max} in regime of 20-25 Tesla has been scoped.
- **Preliminary design** identified options for static stress
 - > Dynamics not addressed.

0.1 GPa

B₀ ~9.2 T on axis for R/a~3, 1 m shield

Small size permits reasonable cool/warm time for structures during demounting Different joints design → flexibility vs P_{electric}

FNSF-like

	D Shape	Window Shape
Cooling: amount of LN ₂	20 trucks (600m³)	95 trucks (2900m³)
Cooling: amount of LH ₂	6 trucks (180m³)	30 trucks (900m³)

	D Shape	Window Shape
Joint dissipation @ LH ₂	30 kW	720 kW
Heat radiated from FLiBe	160 kW (@LN ₂) 700 W (@LH ₂)	160 kW (@LN ₂) 700 W (@LH ₂)
Wall plug Electric Power	4.4 MW	52 MW

DEMO-like

- Coil shape tradeoffs.
- Window-shape: easier design but longer down time + more electric power...use for more FNSF version?
 - D-shape: more complex design, but quicker changes + lower electric power...more DEMO
 - Warmup ~ 3 days with dry air
 - Cool down ~1-2 days

Analysis confirms high-B path to small size, high gain design <u>away</u> from operational limits

Design parameter	Constraint	Limitation
Inboard blanket thickness	$\Delta_b > 0.5 \text{ m}$	TF coil lifetime
Elongation	$\kappa < 5.4\epsilon$	Vertical stability
Toroidal magnetic field	$B_T < B_{T,max} \left(1 - \epsilon - \frac{\Delta_b}{R} \right)$	TF magnetic stress
Edge safety factor	q(a) > 2.2	Major disruptions (kink limit)
Density	$\bar{n}_e < \frac{l_p}{\pi a^2}$	Disruptions (Greenwald density limit)
Plasma pressure	$\beta_N = \beta_T / (I_p / aB_T)$ $\beta_N \le 3$	Peeling/ballooning instability (Troyon no-wall limit)
Under-dense	$\frac{f_{ce}}{f_{pe}} = \frac{0.31B_T}{\sqrt{n_{20}}} < 1$	Lower Hybrid wave propagation

Simultaneously: $Q_p > 25$, $P_f/A > 3$ MW/m², non-inductive

Synergistic benefit: aspect ratio optimization allowed by demountablity

FPA Whyte Dec. 2012

High-field side Lower Hybrid exploits favorable physics for robust penetration + Launcher survivability

- Developed for 24/7 tokamak to study PMI: VULCAN*
- Launchers integrated into axisymmetric inner wall
- Placing launcher at goodcurvature + quiescent SOL
 → controlled launcher PMI
- Launch point optimized near null point
 - Maximized radial propagation when poloidal field is minimum.

Synergistic benefit: High-efficiency mid-radius current drive →

SS scenario at lower bootstrap fraction ~80%

 $N_{\parallel}\,{\sim}\,1.5$ is damping at 10 keV.

Cannot push N_{||} lower due to accessibility and fast-wave conversion concerns.

 10 keV volume averaged reactor
 optimal for efficient LHCD at midradius.

→ Favors smaller reactors.

High field permits high fusion gain with reduced scenario requirements → Shifts risk from plasma physics to magnets

Plii

B ~ 9.2T + <T> ~ 10 keV + high η_{CD} → High gain + robust steady-state + Q_e ~5

Parameter	Result
Fusion Power	511 MW
LHCD Coupled Power	20 MW
Qp	25
Вт	9.2 T
lp*	7.66 MA
ICD	1.26 MA
f _{BS}	83.6%
ηςδ	0.37 x 10 ²⁰ AW ⁻¹ m ⁻²
q 95	~6

$$Q_{e} = \frac{\eta_{th}((1+M_{n})P_{fusion} + P_{heat} + P_{dissipated})}{\frac{P_{coils}}{\eta_{e}} + P_{LH} + P_{primp}}$$

Parameter	Result
Qe	5.12
P _{th}	640 MW*
Pe	270 MW
Plant efficiency	42%

Location	Transmitted Power
Wall plug	55.6 MW
Klystrons	27.8 MW
Cold waveguide	24.0 MW
Hot waveguide	22.4 MW
RF launcher	20.0 MW

FPA Whyte Dec. 2012

Mir

Demountablity → Liquid immersion blanket → reduce solid waste ~x50

ON REAC

|||;7

Legend

Green – ZrH₂ Brown – Vacuum (Insulating Gap) Dark Grey – Inconel 718 Red– Beryllium* Yellow – Tungsten Light Blue – 90% ⁶Li Enriched FLiBe Dark Blue – YBCO + Steel Support Pink – Plasma

FPA Whyte Dec. 2012

Full modular replacement: no connections ever made inside TF Transition FNSF → DEMO

• R=3.3m, R/a=3, B=9.2T

Illii

- $P_f/A \sim 3.3 \text{ MW/m}^2$, $A \sim 180 \text{ m}^2$
- VV/core can be single lifted
- All construction/QA offsite

Simplified single-fluid cooling scheme at high temperature like molten-salt reactors P_{heat}/S~0.65 MW/m² matched by Alcator C-Mod

Design activity indicates acceptable TF lifetime and TBR.

Vacuum vessel has dpa limit rather than blanket

Use 90% Enriched ⁶Li FLiBe with 2cm Be Multiplier to Achieve TBR of 1.14

Inner VV Thickness (cm)	Blanket TBR	Channel TBR	Total TBR
0.5	0.931	0.263	1.194
1	0.890	0.268	1.158
1.5	0.864	0.276	1.140
2	0.822	0.280	1.102

Material Layer	Alphas (appm)	Displacements per Atom
Tungsten FW	4	14
Inner VV	320	43
Outer VV	180	27
Be Multiplier	3100	15
FLiBe Blanket	N/A!	N/A!
Tungsten Shield	0.5	4
Blanket Tank	0.1	0.02
ZrH ₂ Shield	0.003	0.008

FPA Whyte Dec. 2012

(i**j**

ШïГ

Demountable coils \rightarrow Modular replacement of vacuum vessel + components \rightarrow full off-site construction + QA of all internal components \rightarrow No connection ever made inside TF = Paradigm shift to standard sector maintenance

Plii

Immersion liquid FLIBE blanket \rightarrow No materials radiation damage in blanket \rightarrow ~50-fold reduction in solid waste \rightarrow full coverage high-TBR blanket

Шіг

Demountable coils → Attractive liquid immersion blanket

Key Features

Tritium breeding ratio: 1.15 Excess T in FPY: ~3 kg

High thermal efficiency Low recirculating power

30+ year lifetime of coils from radiation damage

Solid waste reduced x50 compared to standard blanket

Lower Hybrid CD with high-field side launch \rightarrow near theoretical max. for CD efficiency at midradius $\rightarrow \sim 20\%$ external control of current profile

Шіг

~4 keV pedestal not
regulated by ELMs →
+ high CD efficiency
→ high fusion gain
with moderate
bootstrap fraction
= Robust steady-state
scenarios producing
~250 MWe

ШïТ

Acknowledgements

- 22.63 Design Course Students:
 S. Arsenyev, J. Ball, J. Goh, C. Kasten, P. Le, F. Mangiarotti,
 B. Nield, T. Palmer, J. Sierchio, B. Sorbom, C. Sung, D. Sutherland
- 22.63 Design Course Teaching Assistants: H. Barnard, C. Haakonsen, Z. Hartwig, G. Olynyk
- MIT professional staff:
 P. Bonoli, L. Bromberg, M. Greenwald, B. Lipshcultz, E. Marmar, J. Minervini, S. Wolfe