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Fusion’s development is impeded by its 
large single-unit cost	



•  The overnight cost of a fission power plant is ~ $4/W.	



•  First of kind fusion plants at least $10-20/W 	



•  Which implies that developing fusion reactors at 
~GWe scale requires 10-20 G$ “per try” e.g. ITER	



•  Chance of fusion development significantly improved 
if net thermal/electrical power produced at ~5-10 x 
smaller i.e. ~ 500 MW thermal.	
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Steady-state tokamak reactor: robust and compact 
if the achievable B can be ~doubled from its 

present limitation of B~5-6 T to B~10 T 	


•  Reactor/DEMO criteria?���

1) Adequate fusion power areal density ���
2) High fusion (Q > 25) and electrical  (Qe~5) gain. ���
	



•  High fusion power density and thermal conversion are not optional ���
E.g. It would take ITER ~ 1800 years to pay off its principle even if operating 
24/7 and selling electricity at 10 c/kW-hr.  ���
Problem? Pfusion / A ~ 0.7 MW/m2 ,  water-cooled wall and 20B$���
	



•  Robustly non-disruptive steady-state scenarios are also necessary	


Ø  Plasma pressure (pth), determines the fusion power density (~pth

2), will be���
~ 1 MPa in all reactor designs [1]	



Ø  So energy density a factor of 4-5 larger than in ITER where damage from 
disruptions/instabilities seems already unacceptable. 	



Pf / Ablanket ≥ 4 MW m−2
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The development schedule of fusion power 
would be greatly accelerated if ‘1st DEMO’ 
could be designed with two extra criteria 	



‘1st DEMO’ plant criteria	


3) Smallest size/volume, total power output and expense, and, 	


4) For the leading tokamak concept, robust steady-state operation. 	



•  The only way to satisfy all of four these criteria is to increase B 
which can be seen from the simplified relationships at fixed R/a* 	



Pf
Ablanket

~ βN
2

q2
⎛
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* See Appendix of FESAC WP for details	
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Doubling B field to ~9-10 T solves the 
“Catch-22” of initial DEMOs	



•  #1: At standard B~5-6 T the bracketed “plasma physics” must 
be pushed to and past intrinsic operational limits (e.g. q*~2, 
Beta_N~5-6) in order to keep size reasonable, R<6 m.	



•  #2: Yet exceeding any operational limits becomes essentially 
unacceptable due to reactor pressure/energy density!	



•  Doubling the B field provides x10-16 to simultaneously 
decrease plasma physics /operational risk (bracketed terms) 
and size and cost ($ ~ R2-3)	



	

 A new generation of superconductors developed over the last 
decade allow ~doubling of Bmax compared to standard NbSn	
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Sub-cooled high-temperature super-conductors 
have critical currents with very small 
degradation versus B field up to ~30 T	



Developed for power 
transmission ���
	


Commercially produced in thin 
tapes with excellent mechanical 
properties (hastelloy + Cu)	
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HTSC tapes can use intermediate T ~ 20K (H cooling)���
 Design B primarily // to tape in high field regions	
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Recent MIT Design Effort* 
“Rules”	



•  Develop a robust conceptual design based on YBCO magnets 
of a high gain, net electricity producing magnetic fusion power 
plant at substantially reduced total thermal power ~ 500 MW 
(factor of ~5 reduction from typical designs).	


Ø No violation of basic core limits: kink, no-wall Troyon Beta, 

Greenwald to assure stable operation.	


Ø Fully non-inductive scenarios but robust external control	


Ø Minimize solid waste	


Ø Minimize capital cost ~ Surface area of plasma/blanket to assure 

best fusion economic outlook.	


Ø Q_electric > 4 	



*22.63 MIT fusion design course Spring 2012	
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The limitation in B field is set by 
structural stress limits	



•  Bcoil,max in regime of 
20-25 Tesla has been 
scoped.	



•  Preliminary design 
identified options for 
static stress	


Ø Dynamics not 

addressed.	



•  B0 ~9.2 T on axis for 
R/a~3, 1 m shield	
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HTSC tapes also open the possibility that the 
SC coils are demountable���

Design: low resistance normal joints	


•  Points	

 Structures for stress	
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Small size permits reasonable cool/warm time 
for structures during demounting���

Different joints design à flexibility vs Pelectric	



DEMO-like           FNSF-like 	



•  Coil shape tradeoffs.	


•  Window-shape:���

easier design but longer 
down time + more electric 
power…use for more 
FNSF version?���
	



•  D-shape: more complex 
design, but quicker 
changes + lower electric 
power…more DEMO	


Ø  Warmup ~ 3 days with dry 

air	


Ø  Cool down ~1-2 days	
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Analysis confirms high-B path to small size, 
high gain design away from operational limits	



Simultaneously: Qp>25, Pf/A>3 MW/m2, non-inductive	
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Synergistic benefit: aspect ratio 
optimization allowed by demountablity	



a/R	



Bcoil,max: 13 T	



Bcoil,max: 18 T	



Bcoil,max: 22 T	



Example 0-D point designs finds R/a~3 in 
order to minimize Ablanket and $$	
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High-field side Lower Hybrid exploits 
favorable physics for robust penetration + 

Launcher survivability 	


•  Developed for 24/7 tokamak 

to study PMI: VULCAN*	



•  Launchers integrated into 
axisymmetric inner wall	



•  Placing launcher at good-
curvature + quiescent SOL 
à controlled launcher PMI	



•  Launch point optimized 
near null point	


Ø  Maximized radial propagation 

when poloidal field is 
minimum.	



* Fusion Eng. Design 2012	
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Synergistic benefit: High-efficiency ���
mid-radius current drive à ���

SS scenario at lower bootstrap fraction ~80%	





17	

FPA Whyte Dec. 2012	



High field permits high fusion gain with 
reduced scenario requirements  à ���

Shifts risk from plasma physics to magnets 	



Sips IAEA  & Zarnstorff MFE roadmapping	



ARIES-AT	



ARC	



ARC	
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B ~ 9.2T + <T> ~ 10 keV + high ηCDà ���
High gain + robust steady-state + Qe~5	
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Demountablity à Liquid immersion 
blanket à reduce solid waste ~x50	
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Full modular replacement: no 
connections ever made inside TF���

Transition FNSF à DEMO	


•  R=3.3m, R/a=3, B=9.2T	


•  Pf/A~3.3 MW/m2, A~180 m2	


•  VV/core can be single lifted	


•  All construction/QA offsite	
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Simplified single-fluid cooling scheme at high 
temperature like molten-salt reactors ���

Pheat/S~0.65 MW/m2 matched by Alcator C-Mod	


•  Point	
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Design activity indicates acceptable ���
TF lifetime and TBR. ���

Vacuum vessel has dpa limit rather than blanket	
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New high-T superconductors can provide the 
path to smaller & sooner fusion:���

Higher B + Detachable coils	



Can nearly double B (up to 
stress limits of structure)	



Sub-cooled YBCO tapes	



R/2  à Volume/8 à $/8 !	



Away from operating limits	



Small tape-to-tape joints à 
coils can be demounted	



Eliminate sector (pie-wedge) 
maintenance	



Modular replacement of 
smaller internal parts	



More easily constructed and maintained fusion 
device at small size but with reliable high gain	
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Key innovations towards 
achieving design goals	



Integrated YBCO + 
structure to achieve  
9.2 T on axis without 
large electrical costs	



R=3.2 m	
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Key innovations towards 
achieving design goals	



Demountable coils à 
Modular replacement 
of vacuum vessel + 
components à full 
off-site construction 
+ QA of all internal 
components à	


No connection ever 
made inside TF	


= Paradigm shift to 
standard sector 
maintenance	
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Key innovations towards 
achieving design goals	



Immersion liquid 
FLIBE blanket à No 
materials radiation 
damage in blanket à 
~50-fold reduction in 
solid waste à full 
coverage high-TBR 
blanket 	



FLIBE	
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Demountable coils à Attractive 
liquid immersion blanket	



Key Features	


	


Tritium breeding ratio: 1.15	


Excess T in FPY: ~3 kg	


	


High thermal efficiency	


Low recirculating power	


	


30+ year lifetime of coils from 
radiation damage	


	


Solid waste reduced x50 
compared to standard blanket	



Liquid FLIBE	


@ 900 K	
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Key innovations towards 
achieving design goals	



Lower Hybrid CD 
with high-field side 
launch à near 
theoretical max. for 
CD efficiency at mid-
radius à ~20% 
external control of 
current profile	
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Key innovations towards 
achieving design goals	



~4 keV pedestal not 
regulated by ELMs à 
+ high CD efficiency 
à high fusion gain 
with moderate 
bootstrap fraction	


= Robust steady-state 
scenarios producing ���
~250 MWe	
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