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» LCLS Free Electron Laser facility.
- Unprecedented capabilities at the MEC instrument [since 4/2012]
« 10'2 x-ray photons for pump-prober experiments
* High spectral resolution (seeded beam)
» High wavenumber resolution (x-ray laser)
* High temporal resolution (20-50 fs)
* Novel X-ray scattering experiments
- First observation of Plasmon shift in shock-compressed plasmas
- First continuous measurements of the dynamic structure factor
- First observations of ion acoustic waves in warm dense plasmas
* Pressures approaching 5-10 Mbar at 3x compressed Al
» Test theoretical methods to determine pressures of dense matter
* Summary
» High power laser workshop and outlook towards a bright future

We have a new precision tool to measure physical properties and
to make transformative discoveries in High-Energy Density physics

Glenzer, FPA meeting, December 11, 2013



Three big science questions

Develop and apply precision pump-probe
experiments with the world-class LCLS beam to

answer the most important questions in high
energy density (HED) science

» Relativistic laser plasma interactions:
Uncover the physical mechanisms for ultra short
pulse laser matter interactions, plasma heating and
particle acceleration

« Laboratory astrophysics:
Ultra-high power optical lasers offer the unique
opportunity to produce and characterize collision-less
shocks, particle acceleration, and anti-matter plasmas

« Strong shocks and High Pressure phenomena:
The use of LCLS will probe high pressure states
found at the center of the large Jovian plants, the
earth’s deepest interior and in inertial confinement
fusion with unprecedented precision

Glenzer, FPA meeting, December 11, 2013




Linac Coherent Light Source at SLAC

X-FEL based on last 1-km of existing 3-km linac
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Experiments at the Matter at Extreme
Conditions end station
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Matter of Extreme
conditions end station

Tracking shock waves
in dense matter

Precision X-ray
Thomson scattering
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We perform novel pump-probe measurements of plasma conditions and
shocks with 1 um, 30 fs resolution

Glenzer, FPA meeting, December 11, 2013



Experimental geometry uses counter propagating long pulse
lasers and a delayed LCLS beam
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High resolution x-ray scattering observations of
_plasmons in Al using the seeded beam at 8 ke\/, ..

DM\

X-ray scattering from isochorically heated Al
with seeded beam resolves plasmons
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Seeded Bent crystal spectrometer in MEC SASE
Glenzer, FPA meeting, December 11, 2013




High resolution x-ray scattering observations of
_plasmons in Al using the seeded beam at 8 ke\/, ..
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Collective X-ray Thomson Scattering (A, > Ap)

7‘0 © o
000000000004 O{%@ @e ® o
unuuuuggj \/ ©% eogppe Dense

e e
o= © ®e Plasma

LCLS
X-ray beam

Detector ©g ©
: kg z.\k © © — Ap
X Rays K, > M~ 1/k

» Plasmon resonance determined by
plasma frequency w,, = [N.e%/mg]"?
* Glenzer et al., 2007 PRL
« Kritcher et al., 2008 Science

* First observation of acoustic
resonances at w,, ~ [kT./m]"?




High resolution x-ray scattering observations of
_plasmons in Al using the seeded beam at 8 ke\/, ..
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Theoretical fit to the plasmon spectrum
determines solid- density conditions i
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Theoretical fit to the plasmon spectrum
determines solid- density conditions
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We now have an accurate (first-principals) method that determines the
physical properties of warm dense matter: n,= 1.8 x 1023 cm=3 £ 5%

Glenzer, FPA meeting, December 11, 2013
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Theoretical fit to the plasmon spectrum

determines solid- density conditions
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Plasmon measurements accurately determine
3x compressed Al at temperatures of 2.5 eV o
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We now have an accurate (first-principals) method that determines the
physical properties of warm dense matter: n,.= 4.7 x 1023 cm=3 £ 5%
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First Observation of ion-acoustic waves in
Warm Dense Matter
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Clear evidence of double shock compression at the time of shock
coalescence by directly monitoring the ion-ion correlation peak
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Clear evidence of double shock compression at the time of shock
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Clear evidence of double shock compression at the time of shock
coalescence by directly monitoring the ion-ion correlation peak
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Wavenumber resolved scattering data resolves interactions on
atomic scales

N

Using short range repulsion
provides an excellent fit to W(k)

Pseudopotentials account for polarisable free
electron background & bound core electrons
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Combined with plasmon data these experiments yield a critical experimental test
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Angularly and spectrally resolved data show that the shift of W(k)

is determined by short range repulsion
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The peak of the ion-ion
structure factor provides a well
pronounced diagnostic feature

After calibration against
plasmon scattering the
wavenumber of the maximum
of W(k) can be used to infer
densities

Short range repulsion is an
indication of negative
screening

Important consequences when
determining the pressure



The internal energy per particle (and consequently the pressure)

depends on S(k)
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The internal energy per particle (and consequently the pressure)

depends on S(k)
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The internal energy per particle (and consequently the pressure)

depends on S(k)

A

g 0
AN

N

Can account for as much as -2 Mbar

Compression {(p/p,.)
' 1 2 3
. &,
"I
x - e
— /’JJ’
- -
= & o
-— ) .
-— #
A
Q F jal
= L
2 ¢ vl
) L 2
£
(¥ ’
™ /I
© R
’_ " . . aa
' - - ’ " :
' 4 ¥
3 . r -
\.'.] -—
2 3 4 5 5 T a

Mass density (g/cc)

[1] Galam and Hansen, Phys Rev. A, 14 (1976)
[2] R. P. Drake, High-Energy-Density Physics, (2006)
Glenzer, FPA meeting, December 11, 2013

Total pressure - P(n,, T, S(k))

PTOT =B+F)e
lon pressure
B =px+PG

Excess ion pressure [1]
(0)
P = nU n(Ze) f Sk )

3N 1277 )
Ideal gas pressure
Fo = nkT,

Electron pressure
P=P.+P_ +F.+P,

deg

Fermi pressure [2]

P - h? (i)mnm
" 2om\x) ¢

Quantum electron degeneracy pressure [1]

[R(2R2 _3)1+R? +3sinh R] r-tr

m,c

e

me C
deg =

Coulomb negative pressure [1]
8Jt3m4c5

OCZZB( 4 )1/3 R B o2
3 2l o~ 0=
h 107"\ 97 4me hc

Electron-exchange pressure [1]

P.=

2am’c’
xc h3

g




The internal energy per particle (and consequently the pressure)

depends on S(k)
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2 years versus 7 minutes

Measured ion-ion correlation peak

120 T. Ma et al., PRL 110, 065001 (2013)
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Measured ion-ion correlation peak
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The ion-ion correlation peak has been measured in a number of
shock-compressed samples
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Workshop on high power lasers at SLAC
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Homit High-Power Laser Workshop

SAVE THE DATE: October 1-2, 2013

SLAC National Accelerator Laboratory, Menlo Park, USA

This workshop will bring together the intemational science community to discuss the unique physics
opponunities enabled by the new 200 TW laser at the Linac Coherent Light Source (LCLS). Coupling
this laser to the workd-class LCLS x-ay beam at the recently commissioned Matter in Extreme Condiion
(MEC) instrument wil alow exquisite pump-probeé expernments 10 address the mos! important physics
questions of high-power laser plasma interactions physics in areas of high-energy densty physics,
laboratory astrophysics, laserparticle accaleration, and noninear optical science.

The workshop will highight recent resuls from MEC, describe the scentific opportunities for laser
expenments at 200 TW and PW power and present and discuss the user access policy for performing
laser expenmants at MEC,

Hosts

Dr. Roger Faicone
Director of the Advancad Light Source, Lawrence Berkeley National Laboratory

Dr. Siegined Glenzer
Dstingushed Statf Scentist. SLAC National Accelerator Laboratory

Dr. Stefan Hau-Riege
Physicist, Lawrence Livermone National Laboratory
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Sponsors — thank you
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company sponsors, and SLAC @) Amplitude_
- Support 14 renowned speakers and o
discussion leaders GCOHERENT.
- Support 19 students/postdoctoral X .
scizstists i Continuum
» >140 scientists registered ] kit
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High-Power Laser workshop at SLAC, October 1st-2nd

e AL

30

Glenzer, FPA meeting, December 11, 2013



MEC user workshop on High-Power Lasers 2013

19 US university
groups

from 17 US
universities
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MEC user workshop on High-Power Lasers 2013
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Goals for the workshop

o1 AR

 To perform world-class HED physics at MEC/LCLS

* Need the input of the HED/HEDLP community
- What are the important new directions in HEDLP?
- How can we make best use of the unique combination of
high-power lasers and LCLS x-rays?
- What ideas need LCLS x-rays the most?
- What new diagnostics and instrumentation is needed?

- High-Power Laser workshop schedule

Part | HED Physics at the MEC Instrument
Featured evening presentation
Part Il Frontiers of High-Power Laser-Matter Interactions
Part lll High-Power Laser Science and Technology
Part IV New Directions

PartV MEC capabilities and priorities

Discussions

Glenzer, FPA meeting, December 11, 2013 33



A new 200 TW-class laser will access important areas
of Matter at Extreme Conditions
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for HED physics, particle acceleration, and QED
log n{H) /m’
20 7 30 35 . .
10 = 6 e Accurate probing of physics
g mechanisms will be accomplished
> by X-ray Thomson scattering with
g |- /R SSo k& the LCLS beam
< L A0dQM0. SeereetsPatie . = _
“"*"’/"“ g * Provides accurate temperature
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=

and density measurements
Inser-plasme interstion

> Q
6 | m.s.xoy - * Resolve micron scale length and

fs time scales

* Determine laser coupling, heating,

0
LeLs Prese"t MEC and pressure conditions
experiments |
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Path towards optimizing use of high-power petawatt lasers
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Combining High-Power lasers with the world-class
LCLS beam will allow novel experiments

Coupling of high-power Physical properties of Laboratory
lasers with matter hot dense matter astrophysics

Proton radiograph of E & B fields

-
R
\

Fundamental laser-particle X-ray Thomson scattering on « Self organization in
acceleration physics hot dense matter matter plasmas

* 100+ MeV protons * Mbar pressures * Weibel instabilities

* Positrons * Isochorically heated matter « Collision less shocks
* Neutrons « Ultrafast phase transitions « Cosmic rays

« 10+ GeV electrons
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Recent experiments have demonstrated a 200 TW laser
driven betatron source
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Q . e- energy (GeV)

\ Magnet The spectrometer provides both
spectral and spatial information on
. Q the betatron source
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Glenzer, FPA meetl ber 11, 2013 F. Albert, B.B. Pollock et al, PRL 2013



Laser-particle acceleration holds promise for new
discoveries and applications

ey AR

DM\

Betatron x-rays from a 200 TW laser experiments provides 100 fs
white light x-rays that scale to 100 keV for PW lasers

/
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1
\
\
T U e
AN U
TP, W

Betatron x-rays
10 mrad

4 ]
Electron energy 300 MeV

Multi-GeV electrons
Electron — x-ray interactions

* F. Albert
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How does the peak brightness of a betatron x-ray source compare
with other approaches?
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How does the peak brightness of a betatron x-ray source compare

with other approaches?

N

A 7>
S

! LCLS | Parameter Specification

..g_ Energy range 1-100 keV (broadband)
?- X-ray flux 108 photons/shot
'f 1077} 1 Source size 1 micron

: i Betatron 1 GeV : Source divergence 1-10 mrad (collimated)
o Source duration 60 fs

g \\\ Source maximum peak | 1022 photons/(mm? x

< 107} \\\\ ? brightness mrad?x s. x 0.1 % BW)
i; . Betatron

§ 10™} pe 0-5GeV !

=1

= | . —
§ Betratron radiator combine high
= 107 . brightness with high temporal

0.1 ' 10 100 1000 resolution for x-ray x-ray pump
X-ray cnergy [keV] probe experiments

Glenzer, FPA meeting, December 11, 2013
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Outline

ol AL
= E o N

» LCLS Free Electron Laser facility.
- Unprecedented capabilities at the MEC instrument [since 4/2012]
« 10'2 x-ray photons for pump-prober experiments
* High spectral resolution (seeded beam)
» High wavenumber resolution (x-ray laser)
* High temporal resolution (20-50 fs)
* Novel X-ray scattering experiments
- First observation of Plasmon shift in shock-compressed plasmas
- First continuous measurements of the dynamic structure factor
- First observations of ion acoustic waves in warm dense plasmas
* Pressures approaching 5-10 Mbar at 3x compressed Al
» Test theoretical methods to determine pressures of dense matter
* Summary
» High power laser workshop and outlook towards a bright future

We have a new precision tool to measure physical properties and
to make transformative discoveries in High-Energy Density physics
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Discussion to combine LCLS with a PW laser
Example: 400J green will pump a 200 J, 200 fs laser _

DM\

m ' 288 1053 91

Example: Apollon laser footprint

Capacitor bank racks

P

10 PW laser plans in
Europe (ELI)

« HIBEF end station at
XFEL (200 TW)

* SLAC: Need Building
with shielding and
infrastructure for PW

* High access option
Laser systemonaiSmxém

table footprint 42
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These class of experiments have been initially
proposed to DOE OFS

N
5
@

Shock compressed matter

Ultrafast isochoric heating

Relativistic plasmas

shock compresed
material

optical ns
heater beam(s)

X-ray b
spectrometer

2-D x-ray scatter \;

|

LCLS x-ray beam ¢
~ )>>> <<<< VISAR
* N

High energy photons
200 T&

/ and particles
LCLS x-ray beam
~J
¥ L/z;
X-ray A 4

spectrometer

Transmission,
X-ray scatter

High power laser-plasma
interaction

200 TW beam

Transmission,
X-ray scatter

2-D x-ray scatter\:/

LCLS x-ray beam

X-ray A
spectrometer

FORWARD proposal (Fundamental Optical Research With Advanced x-Ray

Diagnostics)
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Plasmon measurements accurately determine

temperature and density e
LSy \
Electron density variation: lon temperature variation:
n.=5.4x102cm=3*10% T=3eV*20%
0.2

0.15

0.1

Intensity

0.05

7950 7960 7970 7980 7990 8000 7960 7980 8000 8020
Energy (eV) Energy (eV)
« Strong sensitivity to plasma frequency « Strong sensitivity to structure factor
Wpe = [Ne€2/Meo] "2 Sii(k)
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Wavenumber resolved scattering data indicate negative screening

A

=(K)=S; [f(K)+a(k)I?
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Using short range repulsion
provides an excellent fit to W(k)
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Using short range repulsion
provides an excellent fit

7960 7980 8000 8020
Energy (eV)

The measured densities from plasmon data yields a critical experimental test of the ion structure
factor, where a strong sensitivity also provides an accurate temperature measurement
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LCLS experiments of the microphysics have
provided new insights in ICF ablator physics
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L= g \

X-ray Thomson scattering X-ray Thomson scattering measurements of highly

experiments at Omega have compressed CH at 50 Mbar ICF conditions (Fletcher et al.)
shown densities of n, = -

1024cm a factor of 2 higher 2310 , , 60
than standard radiation- i

hydrodynamic simulations with Simulations with | 50

a Thomas-Fermi model 161 improved

continuum

e

The conditions emulate ICF
capsule ablator conditions HYDRA
during ICF implosions - 0.4 - 5 simulations wjtH
accurate modeling of these I Thomas-Ferm|
plasmas is important to e = , , : 0
calculate hydrodynamic ¢ > L 19 20

. I : electron temperature (eV)
instabilities and compression
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* A.L. Kritcher et al., PRL 107, 015002 (2011),
* L. Fletcher, Phys. Plasmas (2013), in print
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Laser-particle acceleration holds promise for new
discoveries and applications

Laser wakefield >1 GeV
acceleration of electrons

3% O, + 97% Helium
120

Trapped Electrons

/

X, lum)
38 8 8

&

3

2260 2280 2300 2320 2340
X [.A m]

Multi-GeV electrons

Electron — x-ray interactions
Isochoric heating

Record magnetic fields

* K. Krushelnik

 B. Pollock

 T. Tajima

+ C. Haefner

Glenzer, SAC meeting, October 24, 2013
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Laser proton and He+
acceleration to >100 MeV

Neutron beams >2 e9
neutrons

Titanium foil with
proton-rich dot

Laser incidence

Blow-off Hot electron

plasma = »:_’ cloud
’
Target-normal,
quasi-static
electricfield |

Isochoric heating of matter
Equation of state of warm
dense matter

Medical applications

 T. Ditmire

* M. Hegelich
* M. Roth

« G. Korn

* G. Mourou

Fusion processes

Fusion diagnostics and target
chambers

Material science

« E. Moses

e D. Froula
e P.Chen

« J.Wark
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Plasmas produced with high-intensity lasers accelerate and wiggle
electrons to emit Betatron x-rays .
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! Critical energy Y j
044 o [eV]="5x10"'y2n [em™]r,[um] -
0 B TR I (Y
X-ray energy [keV]
To obtain ~ 25 keV Betatron X-rays
we need:
High energy electrons (y>1000 or E>0.5 GeV)
Electron densities 10'8-10"° cm-3
Oscillations amplitude 1-5 pm
48
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Novel particle acceleration mechanism based on Weibel

instability from high power laser-driven currents

Laser:

|| gser = 10%20-102"W cm-2
Target

n,=1022-10%% cm-3

F. Fiuza et al. Physical Review
Letters 108, 235004 (2012).

Counter propagating currents: B-
field growth by Weibel instability




A fully developed Weibel mediated collision-less
shock can be driven by a high laser power

30 — 200 TW, 5 — 0.01 Hz; Scheduled: Q2, FY14 Weibel instability
t(fs) |P n,/ng,
(TW) s
200 35 5 57 6 N
400 175 5 4 5 -

Fully developed shock

e

Peta watt laser conditions

100

t (fs) n,/n,
TW)

'a i'ml

1750 0.05
800 875 5 16 35 0.04

30

0 S 10 15 20 25 0

X (urn]

*Calculations with PIC code OSIRIS, F. Fiuza

Simulations predict observations of high energy particles at PW laser power




