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Plasma science and technology innovation 
on the path to DEMO  

ITER 

FNSF/
DEMO 

parallel 
pathways 

R&D + innovation required for reduced cost DEMO: 
•  Demountable, high temperature superconductors 
•  High-field, compact, modular reactor designs 

R&D + innovation required for steady state: 
•  Power exhaust, transients, wall lifetime 
•  High temperature tungsten PMI in tokamak 
•  SS current drive & heating 
•  Divertor solution compatible with core 
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For PMI, the step from ITER to DEMO will be enormous.  

ITER ARIES-
ACT1 

ARIES-
ACT2 

R(m)  6.2 6.25 9.75 
B(T) 5.3 6.0 8.75 

Pα (MW) 100 360 520 
Pfusion(MW) 500 1800 2600 

PαB/R 85 350 810 

ARIES-ACT1 ITER 

http://aries.ucsd.edu/ARIES/DOCS/bib.shtml 
http:www-pub.iaea.org/MTCD/publications/PDF/ITER-EDA-DS-22.pdf 

Factor of 4 to 10 times 
higher Pα B/R than ITER 

Factor of 105 increase 
in pulse length 

Innovative solutions to critical PMI challenges – beyond those 
the fusion community is now pursuing – must be explored and 
demonstrated on existing and/or upgraded facilities.  

High temperature (1000 C) 
tungsten divertor/wall 

-- while survival of divertor and wall 
   in ITER is already a concern.1 

[1] Richard Pitts, “Physics basis and design of the ITER full-tungsten divertor”, APS  2013, Denver. 
 



For PMI, the step from ITER to DEMO will be enormous.  

ITER ARIES-
ACT1 

ARIES-
ACT2 

R(m)  6.2 6.25 9.75 
B(T) 5.3 6.0 8.75 

Pα (MW) 100 360 520 
Pfusion(MW) 500 1800 2600 

PαB/R 85 350 810 

ARIES-ACT1 ITER 

http://aries.ucsd.edu/ARIES/DOCS/bib.shtml 
http:www-pub.iaea.org/MTCD/publications/PDF/ITER-EDA-DS-22.pdf 

Factor of 4 to 10 times 
higher Pα B/R than ITER 
Factor of 105 increase 
in pulse length 

Innovative solutions to critical PMI challenges – beyond those 
the fusion community is now pursuing – must be explored and 
demonstrated on existing and/or upgraded facilities.  

High temperature (1000 C) 
tungsten divertor/wall 

[1] Richard Pitts, “Physics basis and design of the ITER full-tungsten divertor”, APS  2013, Denver. 
 

Innovative solutions are 
also required to reduce 
the cost of DEMO. 

-- while survival of divertor and wall 
   in ITER is already a concern.1 



1. Demonstrate robust divertor power handling solutions at 
    DEMO boundary plasma parameters  

2. Demonstrate complete suppression of divertor erosion at 
    DEMO parameters, scaling to SS operation (107 seconds) 

3. Achieve goals 1 and 2 while attaining reactor-relevant core 
    plasma performance 

Six milestones must be included in the DEMO 
development pathway, along with facilities and 
R&D programs that will address them: 

4. Demonstrate low PMI, reactor-compatible current drive and 
    heating technologies 

5. Determine high-temperature tungsten PMI response in 
    tokamak at reactor-relevant conditions 

6. Develop demountable HTS technology to increase flexibility                     
and higher high magnetic field for better stability and higher     
current drive efficiency to reduced cost of DEMO designs 
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New Concept1: Use a remote X-point to produce a fully 
                          detached, radiating plasma as a virtual target. 

Advanced divertors have the potential to the solve power 
handling and erosion problems – they must be pursued.  

Spread divertor heat load over the large surface area of the divertor chamber 
by tailoring magnetic geometry and radiation/neutral interaction zone 

[1] http://www.psfc.mit.edu/research/alcator/pubs/APS/APS2013/labombard_cont-oral_APS-13.pdf 

λq 

∼10xλq 

λq 

∼1000xλq 

X-point target divertor1 

Vertical target plate 
divertor (ITER) 

- Cold, fully detached divertor = ~ zero erosion 
- Hot separatrix and pedestal regions = good core performance  



Alcator
DX

MIT PSFC is considering a concept for a high 
power density, advanced divertor test facility1* 

*http://burningplasma.org/web/fesac-fsff2013/whitepapers/LaBombard_B.pdf 

Alcator DX 
Major/Minor 

Radius 0.73 / 0.2 m 

Elongation 1.7 

Magnetic 
Field 

6.5 Tesla 
(8 Tesla) 

Plasma 
Current 1.5 MA 

PAUX (net) 
8 MW ICRF 
2 MW LHCD 

Surface 
Power 

Density 
~ 1.5 MW/m2 

 SOL 
Parallel heat 

flux 
q|| ~ 2 GW/m2 

Advanced 
Divertor 

Concepts 

Vertical target; 
Snowflake; 
Super-X; 

X-point target; 
Liquid metal 

target 

Divertor and 
first-wall 
material 

Tungsten/
Molybdenum 

Pulse 
Length 3s, with 1s flat-top 

•  Demountable, LN2 cooled,  
  copper TF magnet 

 
 
•  Vertically-elongated VV 
 
 

•  High power ICRF, 8MW 

 
 

•  Reactor-level P/S, SOL q|| 
  and plasma pressures 
 
 

•  Advanced divertor 
  poloidal field coil sets 
  (top and bottom) 
 
 

•  Inner-wall LHCD 
 
 
•  Inner-wall ICRF 
 
 

Key Elements: 

•  Development platform for 
  low PMI RF actuators: 
 

•  extremely strong super-structure 
•  sliding TF joints 
•  coaxial OH/PF coil feeds 
•  electro-formed terminals  
•  PF and OH coils supported by   
   rigid vacuum chamber 
•  Reactor-relevant RF heating 
  and current drive systems 

Proven Alcator Technology: 

ADX 

=> same and higher than 
      Alcator C-Mod 

 
 

[1] http://www.psfc.mit.edu/research/alcator/pubs/APS/APS2013/Vieira_poster_APS-13.pdf 	




Alcator
DX

“Tame the plasma-material interface with plasma physics” 

•  Internal PF coils to test the most promising 
  magnetic geometries and divetor targets.  
•  Double-null geometry: 
    Advanced divertors -- low-field side SOL 
    Quiescent, low heat flux -- high-field SOL 
 

MIT PSFC is considering a concept for a high 
power density, advanced divertor test facility ADX 

Double null + inside launch RF 
=> potential game-changer for heating 
     and current drive actuators 
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Alcator
DX

-- an important innovation platform for low PMI,  
   reactor compatible RF actuators 

[2] VULCAN: Podpaly, et al., FED 87 (2012) 215. 

Splitter and multi-junction 
fabrication techniques produce 
compact LHCD launchers that 
can fit on the inside wall.   

High field side launch is highly favorable 
for LHCD, as noted in VULCAN study2. 

� High B-field side  
  => lower n// 
  => penetrating rays 
  => higher CD   
       efficiency 
 

� Quiescent SOL 
    => Low PMI 
    => Excellent impurity 
         screening1 

[1] McCracken, et al., PoP 4 (1997) 1681. 

Milestone:  Develop robust, reactor-compatible 
current drive & heating techniques (for SS burning plasma)  

ADX 



Alcator C-Mod Can provide key information now on high 
temperature tungsten PMI for DEMO 

“C-Mod operates at the right power and particle flux, 
right plasma pressure and density, right magnetic 
field, divertor geometry and materials.”1 
– Next:  Right temperature ≈ Tungsten at >900˚K    

(Requirement for FNSF, Demo) 

Solid tungsten tiles, divertor temperature controlled to 900oK 

Toroidally 
continuous target, 
precision aligned, 
no leading edges 

Designed and ready for fabrication 
[1] http://www.psfc.mit.edu/research/alcator/pubs/APS/APS2013/Greenwald_invited_APS-13.pdf	




Advantages of High Field for Fusion*	

	


	
Operational limits in a tokamak all increase with field 	

	

•  Maximum plasma current (MHD kink limit) IP ≈≈ B 	

•  Maximum plasma pressure (MHD β limit) p ≈ B2 	

•  Maximum plasma density (density limit) ne ≈ IP ≈ B 	

	

.   	


	

3. The path to fusion energy would be much more attractive if the next 
nuclear steps had significantly lower costs 	

	


*Greenwald,  APS DPP, Denver, November 2013	




ADX (8 tesla) 
●  Advanced magnetic 

divertors at reactor nTe, q// 

●  Divertor - core plasma 
optimization 

●  Reactor-relevant LHCD 
and ICRF  ARC1 - High-field (9 Tesla) 

pilot plant 

C-Mod (8 tesla) 
●  High-temp divertor at 

extreme q//, tungsten 
PMI  

●  Advanced LHCD 

What might a high-field development path to DEMO look like? 

Key Enabling Technology: demountable HTS magnetics1 

[1] http://fire.pppl.gov/FPA12_Whyte_SS.pdf	






SUMMARY: a Look to the Future 
•  Significant innovation needed to go beyond ITER, both in physics and 

technology	


•  Physics innovation calls for continuing experimental plasma research	


•  Technology innovations require development of better materials (test 
stands as well as FNSF) and nuclear materials testing (blankets and 
tritium breeding)	


•  High Temperature Superconducting Magnets shoul be developed 
(demountable magnets for ease of maintenance)	


•  High magnetic  field magnets to reduce costs (more compact devices)	


•  Continuing education of scientists and engineers a priority	
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