Fusion Research in Europe

Tony Donné for EUROfusion
EUROfusion officially launched in October 2014

29 Research Units (+ numerous Third Parties) in 27 European countries working together to achieve the ultimate goal of the Fusion Roadmap
8 Strategic Missions tackle all challenges in two main areas:

**ITER Physics**
- Risk mitigation for ITER
- JET, Medium Size Tokamaks, Plasma Facing Component devices

**Back-up strategy**
- Stellarator

**DEMO**
- Conceptual design studies
- A single step to commercial fusion power plants
- Production of electricity with a closed fuel cycle
High fusion performance by reducing energy losses by turbulence and by controlling plasma instabilities.

To achieve acceptable power depositions in the divertor, radiate as much as possible power from the plasma without having adverse effects on the performance.

Develop active methods the state of divertor detachment.

Try to achieve steady state conditions.

Main devices: JET, AUG, TCV, MAST, JT-60SA, ITER.
JET and Medium-Size Tokamaks

JET AUG

MAST Upgrade TCV

JT-60SA

ITER

MAST Upgrade

A.J.H. Donné | FPA | Washington DC | 16th December 2014
EU Tokamak operation with a metallic wall

- **ASDEX Upgrade**:  
  - conversion to all W PFCs complete Gradually over 7 years  
  - in 2014 Massive outer W-divertor and Bare Steel Tiles and new divertor manipulator allowing large area sample insertion

- **JET**:  
  - ITER-like Wall Be wall and W divertor change in one shutdown  
  - Integrated test with DT scenario compatibility in 2017

- **Tore Supra → WEST project (2016)**:  
  - from limiter to divertor configuration, from carbon to W environment,  
  - Access to long pulse operation with actively cooled W-monoblocks components
Development of stationary H-mode for DT

Operational window narrower with JET-ILW

good confinement with strike-points close to pump duct entrance

- Stationary type I ELMing H-modes
  - Gas fuelling: to reduce $W$ source
  - Sufficient ELM frequency: to flush $W$
  - Central heating: to avoid $W$ peaking
  - Heat exhaust control

➤ otherwise $W$-accumulation

$W$ concentration below $C_W \sim 5 \times 10^{-5}$

This confirms earlier work on AUG

I Nunes et al 25th IAEA FEC, St. Petersburg, Russia (2014)

A.J.H. Donné | FPA | Washington DC | 16th December 2014
Impurity screening: 2.5MA baseline H-mode at JET

H-modes @ 2.5MA/2.7T: 20MW NBI only vs. 14MW+6MW NBI+ICRF

- In the ICRF assisted discharge the central electron temperature is higher and the core SXR emission is mitigated (impurity screening)
- Somewhat larger total Prad with ICRH due to enhanced PWI (RF sheath effects)
Sawtooth control and fast ions in JET

Experiments for 3 ICRH phasings

Modelling performed with
- SCENIC and SELFO for ICRH distribution
- HAGIS and MISHKA for stability calculations

Both experiment and modelling shows
- Sawtooth control is consistent with fast ion mechanism
  - depends on parallel velocity asymmetry of distribution, and large orbit width effects)
- Sawtooth stabilisation over fairly wide region of resonance location
- +90 phasing best
  - smallest sawteeth and widest region of control.
  - Asymmetry in the distribution is strongest with +90 phasing
**Neutron Streaming Experiment at JET (1/2)**

- **Neutron fluence** measured through large penetrations of JET Torus Hall biological shield up to ≈ 40 m from plasma source

Highly sensitive thermo-luminescent detectors individually calibrated in terms of kerma in air and neutron fluence

Neutron and γ-ray components separated using pairs of \(^{\text{nat}}\text{LiF}\) and \(^7\text{LiF}\) detectors
  - \(^{\text{nat}}\text{LiF} : \text{Mg}, \text{Cu}, \text{P} (\text{MCP-N})\), 7.6\% \(^6\text{Li} \)
  - \(^7\text{LiF} : \text{Mg}, \text{Cu}, \text{P} (\text{MCP-7})\), (0.03\% \(^6\text{Li} \))

- **Exposure to JET DD plasmas**
  - 22/9 – 11/10 2013, \(Y_n = 2.76 \times 10^{18}\) neut
  - 22/6 – 6/9 2014, \(Y_n = 9.90 \times 10^{18}\) neut

- **Validation** in a real fusion environment of numerical tools used in ITER for calculating the neutron streaming in penetrations in large and complex volumes
Calculations of neutron fluence and dose at TLDs using MCNP.5 – 6
Detailed model of JET machine
Improved model of JET building with penetrations
FENDL 2.1 neutron cross sections (ITER ref.)

Comparison of measurements and calculations: good agreement over up to 6 orders of magnitude variation of neutron fluence

Preparation for DTE2 in progress
(CCFE, ENEA, HELL, IPPLM, MESCS)
ITER goal:
\[ H_{98} \sim 1, \beta_N = 1.8, n/n_{gw} \sim 0.85, q_{95} \sim 3 \]

Scenario achieved in 2014:
(1.2MA / 2.0T, 3.8 MW NBI + 1.8MW ICRH)
But need high gas puff level for stationarity

Issues 2014:
- Low confinement \( H_{98} \sim 0.85 \)
- Large ELMs
- High divertor heatload

Tried 2014:
- ELM mitigation: unsuccessful
- N seeding: promising
- Scenario with \( q_{95} \sim 3.6 \): promising

Goal for 2015:
- Alternative scenario with \( q_{95} \sim 3.6 \)
- Achieve ELM mitigation (RMP/pellets)
- Achieve tolerable heatload by mitigation with \( N_2 \) seeding
Experiment in 2014 with impurity seeding in low and high triangularity plasmas showed:
- Both Nitrogen and Carbon (CD$_4$) show similar confinement benefit
- This worked equally well for both low and high triangularity plasmas (unlike JET with N$_2$ seeding)
- The confinement benefit is a pedestal effect

What did we learn?
- Experiment shows that absence of C can (most likely) be replaced with N$_2$ in metal devices
- Role of seeding (raises T) and triangularity (raises n) are orthogonal.

Goals for 2015:
- Investigate power degradation of confinement in fuelled and seeded plasmas
- Optimising confinement in improved H-modes combined with heatload mitigation
- Study the Z-dependence (He, B, C, N, O, Ne, Ar, Kr)
- Provide link with JET-ILW experiments
MST12014 - Energy loss mechanisms approaching H-mode density limit

4 distinct, quasi-stable regimes at the approach towards the H-mode density limit (HDL)

- Distinguished by evolution of plasma density & temperature and stored energy

Characterized the SOL filament behaviour

1. Stable H-mode
   - density increases
   - pressure constant

2. Degrading H-mode
   - density plateau in the SOL builds up, core density fixed
   - stored energy (pressure) decreases

3. Breakdown of H-mode
   - overall density profile constant
   - stored energy drops
   - still H-mode, but ETB erodes

4. L-mode
   - density increases again
   - pressure almost constant

\[ I_{sat} \] on fast reciprocating probe (far SOL, AUG #30586)

- Only weak filaments
  - Low losses

- More filaments
  - More losses

- Strong filament appearance in phase 3 & 4
  - Increased transport losses

Matthias Bernert
Pronounced detachment achieved with N and Kr seeding

Nitrogen

Strong radiator at X-point, moving inside confined region
Quasi-stable operation, RT control possible

\[ \frac{P_{\text{sep}}}{R} = 7-9.4 \text{ MW/m} \]
\[ f_{\text{rad}} \leq 85\% \]
\[ f_{\text{GW}} = 0.95 \]
\[ H_{98} = 0.9 \]

2015
Increase heating power, reach \( \frac{P_{\text{sep}}}{R} \approx 12 \text{ MW/m} \)
Study X-point radiator

SC: Bernert & Lipschultz
Pronounced detachment achieved with N and Kr seeding

Krypton

Radiating ring at pedestal top
MARFE-like radiation condensation
insignificant reduction of confinement
ELM behaviour crucial (high frequent ELMs required)

\[ f_{\text{rad}} \leq 75\% \]
\[ H_{98} \approx 0.95 \]

2015
Study mix of seed impurities
Analyse impact on dilution
MST1^{2014} - Filaments in H-Mode plasmas

ITER relevant condition

- $P_{\text{sep}}/R < 7.3$ MW/m
- $f_G < 0.8$

✓ Midplane SOL shows increasing convective filamentary transport
✓ Input for Modelling
✓ Combining Exp.+Modeling for first wall load estimate for large devices

SC: Vianello & Müller
Disruption avoidance (ECCD) in high $\beta$-limit

SC: Esposito & Maraschek
MST1\textsuperscript{2014} - Runaway scenario established in AUG

- RE generation and dissipation with Ar MGI

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Ip (kA) vs. Time (s) for different Ar pressures.}
\label{fig:ip_time}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Line integrated free-electron density from DCN for shots 31327 (+ 31325).}
\label{fig:free_electron_density}
\end{figure}
- Real-time TORBEAM allows launcher control in $\Psi$-space (using RT-data)
- Closed feedback loop (in real-time operation) with latency below 100 ms
- Minimal set of required real-time diagnostics:
  - equilibrium, mode amplitudes, density profile
- Sweeping across rational surface reduces deposition accuracy requirement

SC: Reich & Sauter
MST1\textsuperscript{2014} - Three fluctuation regions identified in the MAST divertor

- Filaments in the main SOL: shape distorted by magnetic shear near the X-point

- Localised near the separatrix: small cross-field extent (~1cm), persist for ≤8μs frame time

- Filaments in the PFR
  - Strongest close to the separatrix at the inner leg ⇔ bad curvature region.
  - In agreement with \textit{preliminary} BOUT++ calculations.

J.R. Harrison (CCFE), G. Fishpool (SC, CCFE), B. Dudson (U. York), N. Walkden (U. York)
APS invited to be submitted to Plasma Physics and Controlled Fusion
MST1\textsuperscript{2014} - Three fluctuation regions identified in the MAST divertor

- Filaments in the main SOL: shape distorted by magnetic shear near the X-point
Filaments in the main SOL: shape distorted by magnetic shear near the X-point

Localised near the separatrix: small cross-field extent (~1cm), persist for ≤8μs frame time
• Filaments in the main SOL: shape distorted by magnetic shear near the X-point

• Localised near the separatrix: small cross-field extent (~1cm), persist for ≤8μs frame time

• Filaments in the PFR
  • Strongest close to the separatrix at the inner leg ↔ bad curvature region.
  • In agreement with preliminary BOUT++ calculations.

J.R. Harrison (CCFE), G. Fishpool (SC, CCFE), B. Dudson (U. York), N. Walkden (U. York)
APS invited to be submitted to Plasma Physics and Controlled Fusion
MST1\textsuperscript{2014} - Three fluctuation regions identified in the MAST divertor

- Filaments in the PFR
  - Strongest close to the separatrix at the inner leg ⇔ bad curvature region.
  - In agreement with preliminary BOUT++ calculations.

J.R. Harrison (CCFE), G. Fishpool (SC, CCFE), B. Dudson (U. York), N. Walkden (U. York)
APS invited to be submitted to Plasma Physics and Controlled Fusion
significant overlap in the experimental campaign: a tight coordination

JET and MST TFLs will draft an experimental programme to implement on each device: common General Planning Meeting early 2015 in Lausanne

<table>
<thead>
<tr>
<th>JET</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown 2014/15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restart 2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental campaigns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-DT shutdown</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASDEX Upgrade</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown 2014/15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restart + IPP programme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental campaigns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TCV</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown 2014/15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restart + domestic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental campaigns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A.J.H. Donné | FPA | Washington DC | 16th December 2014
8: Stellarator

**Cons:**
- behind tokamaks performance wise
- technically complicated

**Pros:**
- by definition stable and steady state
- a number of important advantages for a fusion reactor

**Add-ons:**
- Impact on the progress of the basic understanding of plasma physics in support of Mission 1 and 2 and in support of the ITER preparation
- Also contribution to PWI issues, diagnostics, ECRH, etc.

**Main device:** Wendelstein 7-X
• main-device assembly finished (May 2014)

• device commissioning on track

• first plasma planned for summer 2015
W7-X: bring the HELIAS line to maturity

PFC-technology structures the way to **reliable, steady-state, high \( {nT\tau_E} \) operation**

Preparation for the actively cooled divertor is the primary target of the first phase. **Long term goal: Basis for a HELIAS FPP**

A. Dinklage for the W7-X Team 25th IAEA FEC, St. Petersburg, Russia (2014)
2: Heat Exhaust Systems

Research in alternative divertor solutions (Super-X, snowflake, liquid metal divertors)

Research in order to understand detached divertor conditions

Research to find more robust materials

Main devices:
AUG, JET (conventional divertor)
MAST, TCV (advanced geometries)
WEST, W7-X (HHF components)
Linear devices (PWI)
Potentially a Divertor Test Tokamak
2: Heat Exhaust Systems

- Investigation of Plasma-Facing Components for ITER, Preparation of efficient PFC operation
- Assessment of alternative divertor & liquid metals PFCs
- Definition and design of the Divertor Tokamak Test facility
2: PFC Devices

Magnum-PSI

Pilot-PSI

PSI-2

JUDITH-1/2

WEST
ITER power width?

\[ \lambda_q(mm) = (0.63 \pm 0.08) \times B_{\text{pol,MP}}^{-1.19} \]

- \( B_{\text{pol,MP}} \) the dominant scaling parameter (\( I_p/a \propto B_{\text{pol,MP}} \))

- Extrapolation to ITER
  \[ \lambda_{q,\text{ITER}} = 0.9 \pm 0.3 \text{ mm} \]

- Divertor power spreading and dissipation can produce acceptable target peak heat flux in ITER
Divertor heat-flux control

Nitrogen seeding on Asdex-Upgrade

P_{sep} / R = 10 \text{ MW/m}^2!

P_{sep}/R \text{ is divertor identity parameter, provided similar density and power width } \lambda_q

Divertor detachment is a key to ITER mission.

Robust target power flux control schemes to be tested across machines for ITER

A. Kallenbach and H Zohm IAEA / FEC 2014
Tungsten dust-wall interaction and dust remobilization

Dust-wall interaction: plays a crucial role in the formation of dust accumulation sites and dust remobilization under normal and transient conditions

Synergy of modeling and experimental efforts
- **MIGRAINe** dust dynamics **code** including dust-wall interactions
- Highly controlled experiments in **Pilot-PSI**

Camera observations of dust motion in the sheath with unprecedented resolution are compared with model predictions to provide insight on the underlying phenomena.

P. Tolias et al., submitted to NF
Missions 3 – 7: Conceptual design of DEMO

3: Neutron resistant materials
4: Tritium self-sufficiency
5: Intrinsic safety features
6: Integrated DEMO design and system development
7: Competitive cost of electricity
Stakeholder engagement activity underway with meetings between PPPT and GEN IV Fission projects taking place to understand early phases processes (ASTRID held 28/11, MYRRAH 22/01/15)

Analysis of high level requirements and interaction with design parameters is ongoing

STAC recommendations have been incorporated into 2015AWP with respect to industrial involvement, additional planning support and decision making

High Level Documents such as the Operational Concept Document and Plant Requirements Document have been issued for comment and revised
• PROCESS (CCFE)
  • Improved modules for radiation, pedestal, bootstrap current, TF coils, TF ripple, Costs, Availability,…
  • Advanced optimisation tools
  • Development towards a system code accounting for uncertainties

• SYCOMORE (CEA)
  ✴ Relatively new system code based on ITM framework
  ✴ Potential to develop features complementary to PROCESS (e.g. system code including a light transport code)
<table>
<thead>
<tr>
<th>Area</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario Modelling</td>
<td>Initial studies of ramp-up and ramp-down, pellet fueling and related transport,...</td>
</tr>
<tr>
<td>Heating &amp; Current Drive</td>
<td>Study of power requirements for NTM control</td>
</tr>
<tr>
<td>Transport</td>
<td>Investigations of bootstrap current, radiation effect on confinement, extrapolation of energy confinement time</td>
</tr>
<tr>
<td>MHD</td>
<td>Initial predictions of pedestal, global stability, vertical stability</td>
</tr>
<tr>
<td>Fast particles</td>
<td>Definition of investigation strategy</td>
</tr>
<tr>
<td>Specification of Wall Loads</td>
<td>Identification of relevant load types, investigations on loads due to radiation and thermal charged particles</td>
</tr>
</tbody>
</table>
The Breeding Blanket (BB) concept considered in PPPT have been adapted (e.g. HCPB and DCLL in the figure) at the current DEMO configuration.

Neutronics, thermo-hydraulics and structural-mechanics performance were evaluated. Issues were identified in TBR and coolant performances.

New design features have been evaluated and performances increased.
The first lay-out for the PbLi Loops for the Water Cooled Breeding Blanket were developed in 2014.

A rough estimate of PbLi amount in a segment’s weight gives:

- 16 Segments
- Central Module: ~17.05m³
- One Outboard segment (8 modules): ~10.34m³
- One Inboard segment (7 modules): ~5.21m³

⇒ PbLi velocity ~ 0.005-0.01m/s
⇒ Mass flow rate/Segment: 52-78kg/s
High frequency high power gyrotron development: Experiment with a 2 MW, 170 GHz, coaxial gyrotron with depressed collector: 170 GHz, \textbf{\~1.9 MW}, total efficiency \textbf{\~47\%}, \textbf{\~3ms}
Photoneutralisation as a method to increase 1 MeV NB efficiency. Feasibility study for DEMO with a milestone: end 2016.
Several HTS Tapes tested & irradiated

comparative approach led to survey technology

Development of simulation models

Electro-mechanical
Electromagnetic

Manufacture and tests of 2 cable concepts

Development of optimal samples design
2 samples manufacture
Good performances at $T=4.2\ K$ & high fields

L. Zani (CEA) and WPMAG Team
Steel development based on thermodynamic calculations

- low temperature steel: **two** 80 kg batches produced
- high temperature steel: **nine** 80 kg batches produced, **four** 100 kg batches in production
- alternative ODS steel production: **23** lab-scale batches produced (250 – 550 g each)
High Heat Flux Materials

W reinforced CuCrZr: simulation & production

First batch: W fibre – W matrix composite fabrication

W laminated pipes in mockups for water and helium cooling

Large-scale W parts production by PIM

M. Rieth (KIT) and WPMAT Team

A.J.H. Donné | FPA | Washington DC | 16th December 2014
Highlights WPRM AWP 2014
Remote Maintenance

MMS Transporter
Transport Casks
MMS Blanket

Revaluation of the in-vessel remote maintenance:
• Improve flexibility allows for more cooling systems and access for diagnostics H&CD.
• Independent blanket and divertor maintenance
• Improved maintenance durations
• Near vertical lifts for blankets increase robustness of remote handling equipment
• Includes a neutron shield plug
• Independent port closure plate
• No in-vessel mover
• ITER-like cask transportation
• Improved unplanned single blanket maintenance
• 75% of blanket and divertor cassette maintenance duration is attributed to removal and installation of services

• Technology evaluation shows Laser to be favourable for in-bore cutting and welding

• Laser welding trials using P91 as a substitute for Eurofer have been undertaken

• Diffused laser has potential to provide extra heat input and can be used for post weld heat treatment
• Draft **Plant Safety Requirements Document** written
  • Basic safety approach and principles set
  • Likely future regulatory regime considered
  • Requirements drafted in discussion with safety team and those working on DEMO design
  • Safety/Designers meeting held to discuss requirements and design choices and their impact
  • Confinement strategy proposed
• Improvements to codes and models for safety analysis
• Start of systematic studies to determine accident sequences for analysis
• Radioactive waste studies: selection of candidate techniques for detritiation of solid waste
Iter has significant delays, possible solutions:
- Use contemporary fusion devices as risk mitigation for ITER
- Reduce the ITER non-active phase by proper preparation and training elsewhere

Proposal
- Establish an Int. Task Force to make a detailed proposal how present machines can be used to bring DT phase of ITER forward

This should include exploration of an ITER Q=10 baseline scenario at higher q₉₅ based on 'improved H-mode' (AUG), 'Hybrid' (JET) or 'Advanced inductive' (DIII-D) scenarios

Specific JET contributions:
- Only machine with DT, with ITER-like wall (Be-handling), full remote handling, organizing truly int. scientific campaigns, training
Long term JET plan depends on the success of the internationalization process (Wagner Panel on Strategic Orientation)

Details of the Alternative Scenario are not yet agreed

The feasibility of two further major enhancements (RMP Coils for ELM Control, ECRH) have been studied
Increase fusion performance in JET

Increase power (~40MW) to sustain (~5s) high $\beta$ at high $I_p/B_t$ ($\geq 3.5\text{MA}/3.85\text{T}$)

Develop heat exhaust control for divertor compatibility (sweeping, radiation)

**DT Campaign options**

<table>
<thead>
<tr>
<th>DT Campaign options</th>
<th>Full DT phase</th>
<th>DT phase ~DTE1</th>
<th>100% tritium only</th>
<th>Trace tritium</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 MeV budget</td>
<td>1.7x10^{21}</td>
<td>2.5x10^{20}</td>
<td>5.0x10^{19}</td>
<td>5.0x10^{18}</td>
</tr>
<tr>
<td>ITER Scenarios in DT*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>20</td>
<td>8</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Hybrid</td>
<td>40</td>
<td>2</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Steady State</td>
<td>20</td>
<td>0</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritium retention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 MeV calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use 14 MeV Fluence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retention removal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isotope scaling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha)-particle effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuelling &amp; DT mix control</td>
<td></td>
<td></td>
<td></td>
<td>transport</td>
</tr>
</tbody>
</table>

*Number of high power (>25MW, 5s) pulses in DT (or 100% tritium) is indicated.

1.7x10^{21} budget: Full exploitation of JET for mitigating the risks for ITER.

A.J.H. Donné | FPA | Washington DC | 16th December 2014
EUROfusion programme is in full swing

ITER Physics Programme:
• Strong programmatic approach
• Priorities discussed/selected EU wide
  • After that execution on device(s) best suited for specific study
• In 2015 simultaneous operation of JET, AUG and TCV
• In 2015 first operation of W7-X

Take home message:
It must be possible to optimize the ITER Research Plan by making proper use of contemporary fusion devices (e.g. training the team of ITER session leaders and operators in working with D-T, Be, Remote Handling, etc......, preferably using the ITER software)