The Magnetic Fusion Program at PPPL

M.C. Zarnstorff

Fusion Power Associates
16 December 2014

Overall Strategy

- Contribute to and prepare for ITER
- Focus on questions & innovations with breakthrough potential
 - Where the US can lead and have impact
 - That can improve prospects and feasibility of fusion energy
- Develop critical science needed for a fusion energy development program
 - In the US
 - With International Partners
- Collaborate broadly to achieve goals

NSTX Upgrade Project Is Nearly Complete

Double B:1T

Double I_P: 2 MA

Double NBI Power

5X in pulse length to 5 sec

First plasma scheduled: Mar. 2015, Research operation: May 2015.

New Center-Stack is Installed In NSTX-U

NSTX-U Mission Elements

- Advance understanding of ST towards burning-plasma regimes
 - Lower collisionality, higher T
 - Non-inductive sustainment
- Develop solutions for the plasmamaterial interface challenge
- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond

Expected NSTX-U run schedule for FY2015

- Research Forum: 24 27 Feb. 2015
 - Plan research experiments and program
- Pre-Forum meeting: 28 29 Jan. 2015
 - Update status of all systems for Research Operation
 - Status of XP solicitations

Burning Plasma: High Power

ITER preparation

Design and fabrication activities
Physics Analysis: specific topics; scenario development

ITER and beyond: Understanding development
Collaborations on DIII-D, C-mod, EAST, KSTAR, JET
NSTX-U, when operation resumes
Theory

Core & edge transport
MHD Stability
Fast ion stability
Disruptions and ELMs
Plasma control, including advanced divertors
Integrated scenario modeling

Pervasive: in all research departments and engineering

Steady-State Electrical Network Components Delivered!

PPPL managing US ITER Diagnostics

- Contracts for US diagnostic contributions
- Designing diagnostic port plugs

Liquid metals as plasma-facing material

- Self-healing against erosion and damage
- No neutron damage, controllable heat removal
- Highly absorbing: no influx to plasma, improved plasma

Initiative Elements:

- Modeling by material scientists (collaboration)
- Diagnostics for surface composition
- Tests of power handling on linear devices (Magnum PSI)
- Development of lithium deposition and flowing liquid-metal approaches
- Tests on toroidal devices (LTX, EAST, NSTX-U)

LTX -- Greatly Enhanced Confinement with Liquid Li Boundary

- Confinement enhancements up to 10x standard scaling with liquid surface
- Will extend to 4 m² of liquid lithium surface
- Initial tests on EAST of flowing liquid lithium limiter (very recent)

•Edge profiles change markedly with increasing Li in NSTX and DIII-D

Recent experiments in DIII-D see transient <u>doubling</u> of pedestal pressure and width

Lithium injection extended to DIII-D, NSTX & EAST many similarities

	DIII-D	NSTX	EAST
Delivery method, Rate	Dropper, 18 mg/s	Inter-shot evaporation, 150-300 mg	Dropper 40 mg/s (Morning evap. 30-40 g]
Pedestal Width	Increased	Increased	?
Pedestal Height	Increased	Increased	?
H-factor	Increased	Increased	Unchanged
Edge fluctuations	Increased	Decreased	Increased
Radiated power without ELMs	Steady	Ramps	Steady
Effect on ELMs	Delayed	Eliminated	Eliminated
Recycling	Unchanged	Reduced	Reduced

Need to understand differences and effects

Stellarators and 3D Shaping

Established method to achieve

Steady-state, disruption free Confinement similar to tokamaks

Potential for simpler, more efficient fusion system

Fewer auxiliary systems: no current drive No need for stability feedback and control High gain, very low re-circulating power

Shared physics understanding with tokamaks

Extensive database from previous experiments. Large, superconducting experiments in Japan, EU

U.S. Contributions to W7X Preparing for Physics Program Engagement

US Partnership on W7X

- PPPL ORNL LANL
- Broadened to Univ. & companies in 2014/15

US Hardware contributions anchor physics involvement (PPPL elements)

- Trim coils for control of equilibrium & divertor
- Imaging x-ray spectrometer for T_i, T_e, v-phi profiles
- Initial divertor "scraper element" design (with ORNL)

Experiments start in mid-2015!

New 3D Optimization Strategies are Emerging

Continued efforts to improve stellarator optimization:

- Configurations with ITG / ETG turbulence eliminated!
- Straight coil outer legs
 - Simplified fabrication and maintenance

Conceptual Studies of Next Step Designs Continue

Explore impact of innovation and advances in understanding.

- Range of missions : CTF to Pilot Plants
- ST, tokamak, stellarator

 Collaborations with CCFE (UK), KDEMO (S.Korea), and CFETR (China) groups.

Summary

- NSTX-U construction is almost complete! Research operation will resume in May!
- PPPL's focus is on developing a predictive understanding, and using it to improve the prospects for fusion.
- We continue to look for innovative approaches to make fusion practical, affordable, and simpler.

Backup

Divertor flux expansion of ~ 50 achieved with Snow Flake Divertor with large heat flux reduction in NSTX

Snowflake divertor in NSTX

Plasma facing component contour

OSP .6

Div. heat flux (MW/m²)
0.36 s - before snowflake
0.57 s , 0.70 s - forming snowflake
0.895 s - radiative snowflake
0.895 s - radiative snowflake

V. A. Soukhanovskii et al., PoP (2012)

D. Ryutov, et al., PoP

P.M. Valanju, et al., PoP

(2007) (2009).
NSTX-U will investigate novel divertor heat flux mitigation concepts needed for FNSF and Demo.

- Up-and-down symmetric Snow Flake / x-Divertors
- Lithium + high-z metal PFCs

Wendelstein 7-X Operation Schedule

Operational phase 1.1 (OP-1.1)

• First plasma. Short pulse, electron cyclotron-heated.

Operational phase 1.2 (OP-1.2)

- First divertor tests.
- Increasing plasma input power and pulse length.
- Steady state scenario optimization.

Operational phase 2 (OP-2)

Extension of 10 MW-heated plasmas to 30 minutes.