Exceptional service in the national interest

Magnetized Liner Inertial Fusion (MagLIF) Research: A Promising Beginning

Daniel Sinars

Senior Manager, Radiation and Fusion Physics Group Sandia National Laboratories

> Fusion Power Associates Meeting Washington, D.C. December 16-17, 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

The NNSA laboratories are collectively pursuing three main approaches to ignition

Magnetically driven implosions may be a compelling path to significant fusion yields (>100 MJ) per shot

- Magnetic fields created by pulsed power can create the large drive pressures (high energy density) needed for fusion and stockpile stewardship
- Approach is fundamentally different than laser-driven target compression with unique physics, risks, and benefits
- Magnetic fields can also make laboratory fusion easier, e.g., strong fields can affect charged particles (electrons, alphas) and thus plasma heat transport and confinement properties
- Magnetically-driven targets driven by pulsed power drivers are energy efficient and could be a practical and cost-effective path to achieving significant fusion yields (>100 MJ). Z today couples ~0.5 MJ out of 20 MJ stored to MagLIF target (0.1 MJ in DD fuel).

Much work is needed to make the target physics credible!

Magneto-inertial fusion seeks to compress heated fuel, using low fuel density and magnetization to minimize radiation and electron thermal conduction losses, respectively

The ρr needed for ignition can be significantly reduced by the presence of a strong magnetic field largely through inhibiting electron conduction

Lower ρ r reduces the required final fuel density (e.g., ~1 g/cc << 100g/cc), reducing radiation loss

This means the stagnation plasma pressure at ignition temperatures is significantly reduced (e.g., ~5 Gbar << ~500 Gbar for hot spot ignition)

Large values of BR are needed and therefore large values of B are needed, B ~ 10,000 Tesla (Earth's B-field is ~0.00003 Tesla)

This field significantly exceeds pulsed coil technology ($B_0 \sim 10-30$ T), therefore flux compression is needed

* Basko et al., Nucl. Fusion (2000); S.A. Slutz et al., Phys Plasmas (2010); P.F. Knapp et al., manuscript in prep.

4

Sandia National

Laboratories

We are evaluating a Magnetized Liner Inertial Fusion (MagLIF)* concept that is well suited to pulsed power drivers and that may reduce fusion requirements

- <u>Axial magnetization of fuel/liner (B_{z0} = 10-30 T)</u>
 - Inhibits thermal conduction losses, may help stabilize liner compression (Nominal β: 5~80)
- Laser heating of fuel (2-10 kJ)
 - Reduces amount of radial fuel compression needed to reach fusion temperatures (R₀/R_f = 23-35)
- Liner compression of fuel (70-100 km/s, ~100 ns)
 - "Slow", quasi-adiabatic compression of fuel
 - Low velocity requirements allow use of thick liners (R/ΔR~6) that are robust to instabilities (need sufficient ρR at stagnation to inertially confine fuel)
- Combination allows fusion at ~100x lower fuel density than traditional ICF (~5 Gbar vs. 500 Gbar)
- DD equivalent of 100 kJ DT yield may be possible on Z in future—requires upgrades from our initial setup e.g., 10 T \rightarrow 30 T; 2 kJ \rightarrow >6 kJ; 19 MA \rightarrow >24 MA

*S.A. Slutz et al., Phys Plasmas (2010); S.A. Slutz and R.A. Vesey, Phys Rev Lett (2012); A.B. Sefkow et al., Phys Plasmas (2014).

- Evidence that fuel is heated before implosion
- Evidence that fuel is magnetized during implosion
- Produces significant yield when magnetization, laser heating, and liner compression is applied
- DD yield is isotropic
- No significant yield when either radiation losses or thermal conduction losses are increased
- Fusion products are magnetized with gyro-radii comparable to plasma radius (BR ~ 0.34 MG-cm)
- Similar neutron and multi-keV x-ray bang times
- Narrow cylindrical plasma with high T_e (2.5-3 keV)
- Comparable T_i is observed along with T_e(2.5 keV)
- Significant opacity from Be liner surrounding the heated fusion fuel is observed (about 0.9 g/cm²)
- Significant down-scattered neutrons from Be liner surrounding fusion fuel is observed 0.1-1 g/cm²

- Evidence that fuel is heated before implosion
- Evidence that fuel is magnetized during implosion
- Produces significant yield when magnetization, laser heating, and liner compression is applied
- DD yield is isotropic
- No significant yield when either radiation losses or thermal conduction losses are increased
- Fusion products are magnetized with gyro-radii comparable to plasma radius (BR ~ 0.34 MG-cm)
- Similar neutron and multi-keV x-ray bang times
- Narrow cylindrical plasma with high T_e (2.5-3 keV)
- Comparable T_i is observed along with T_e(2.5 keV)
- Significant opacity from Be liner surrounding the heated fusion fuel is observed (about 0.9 g/cm²)
- Significant down-scattered neutrons from Be liner surrounding fusion fuel is observed 0.1-1 g/cm²

* M.R. Gomez et al., manuscript in preparation for Physics of Plasmas; M. Geissel et al., private comm.

7

Without Magnetic Field

With Magnetic Field

- Evidence that fuel is heated before implosion
- Evidence that fuel is magnetized during implosion
- Produces significant yield when magnetization, laser heating, and liner compression is applied
- DD yield is isotropic
- No significant yield when either radiation losses or thermal conduction losses are increased
- Fusion products are magnetized with gyro-radii comparable to plasma radius (BR ~ 0.34 MG-cm)
- Similar neutron and multi-keV x-ray bang times
- Narrow cylindrical plasma with high T_e (2.5-3 keV)
- Comparable T_i is observed along with T_e(2.5 keV)
- Significant opacity from Be liner surrounding the heated fusion fuel is observed (about 0.9 g/cm²)
- Significant down-scattered neutrons from Be liner surrounding fusion fuel is observed 0.1-1 g/cm²

- Evidence that fuel is heated before implosion
- Evidence that fuel is magnetized during implosion
- Produces significant yield when magnetization, laser heating, and liner compression is applied
- DD yield is isotropic
- No significant yield when either radiation losses or thermal conduction losses are increased
- Fusion products are magnetized with gyro-radii comparable to plasma radius (BR ~ 0.34 MG-cm)
- Similar neutron and multi-keV x-ray bang times
- Narrow cylindrical plasma with high T_e (2.5-3 keV)
- Comparable T_i is observed along with T_e(2.5 keV)
- Significant opacity from Be liner surrounding the heated fusion fuel is observed (about 0.9 g/cm²)
- Significant down-scattered neutrons from Be liner surrounding fusion fuel is observed 0.1-1 g/cm²

* M.R. Gomez et al., Phys. Rev. Lett. (2014); M.R. Gomez et al., manuscript in prep. for Physics of Plasmas.

9

Sandia

National

- Evidence that fuel is heated before implosion
- Evidence that fuel is magnetized during implosion
- Produces significant yield when magnetization, laser heating, and liner compression is applied
- DD yield is isotropic
 - No significant yield when either radiation losses or thermal conduction losses are increased

Fusion products are magnetized with gyro-radii comparable to plasma radius (BR ~ 0.34 MG-cm)

Similar neutron and multi-keV x-ray bang times Narrow cylindrical plasma with high T_e (2.5-3 keV)

Comparable T_i is observed along with $T_e(2.5 \text{ keV})$

Significant opacity from Be liner surrounding the heated fusion fuel is observed (about 0.9 g/cm²)

Significant down-scattered neutrons from Be liner surrounding fusion fuel is observed 0.1-1 g/cm²

* P.F. Schmit et al., Phys. Rev. Lett. (2014); P.F Knapp et al., manuscript in prep. for Physics of Plasmas.

10

- Evidence that fuel is heated before implosion
- Evidence that fuel is magnetized during implosion
- Produces significant yield when magnetization, laser heating, and liner compression is applied
- DD yield is isotropic
- No significant yield when either radiation losses or thermal conduction losses are increased
- Fusion products are magnetized with gyro-radii comparable to plasma radius (BR ~ 0.34 MG-cm)
- Similar neutron and multi-keV x-ray bang times
- Narrow cylindrical plasma with high T_e (2.5-3 keV)
- Comparable T_i is observed along with T_e(2.5 keV)
- Significant opacity from Be liner surrounding the heated fusion fuel is observed (about 0.9 g/cm²)
 - Significant down-scattered neutrons from Be liner surrounding fusion fuel is observed 0.1-1 g/cm²

* M.R. Gomez et al., Phys. Rev. Lett. (2014); M.R. Gomez et al., manuscript in prep. for Physics of Plasmas.

11

0 ď 1 2 3 Axial Position [mm] 7 -303 -101 8 9 10 -303 -101 -303 -101 Transverse Position [100s of microns]

- Evidence that fuel is heated before implosion Evidence that fuel is magnetized during implosion
- Produces significant yield when magnetization, laser heating, and liner compression is applied
- DD yield is isotropic
- No significant yield when either radiation losses or thermal conduction losses are increased
- Fusion products are magnetized with gyro-radii comparable to plasma radius (BR ~ 0.34 MG-cm)
- Similar neutron and multi-keV x-ray bang times
- Narrow cylindrical plasma with high T_e (2.5-3 keV)
- Comparable T_i is observed along with T_e(2.5 keV)
- Significant opacity from Be liner surrounding the heated fusion fuel is observed (about 0.9 g/cm²)
- Significant down-scattered neutrons from Be liner surrounding fusion fuel is observed 0.1-1 g/cm²
 12

* M.R. Gomez et al., Phys. Rev. Lett. (2014); M.R. Gomez et al., in preparation; S.B. Hansen et al., in preparation.

- Evidence that fuel is heated before implosion
- Evidence that fuel is magnetized during implosion
- Produces significant yield when magnetization, laser heating, and liner compression is applied
- DD yield is isotropic
- No significant yield when either radiation losses or thermal conduction losses are increased
- Fusion products are magnetized with gyro-radii comparable to plasma radius (BR ~ 0.34 MG-cm)
- Similar neutron and multi-keV x-ray bang times
- Narrow cylindrical plasma with high T_e (2.5-3 keV)
- Comparable T_i is observed along with T_e(2.5 keV)
- Significant opacity from Be liner surrounding the heated fusion fuel is observed (about 0.9 g/cm²)
- Significant down-scattered neutrons from Be liner surrounding fusion fuel is observed 0.1-1 g/cm²

13

We plan to test the underlying models & assumptions using a mixture of focused & integrated experiments—there are also a number of physics questions raised by data so far!

- Key target design elements
 - Liner compression
 - Laser heating
 - Magnetization
 - Magnetized burn (high current)

- Key physics model uncertainties
 - Can we model liner instabilities?
 - Electro-thermal
 - Magneto-Rayleigh-Taylor
 - Deceleration RT
 - Impact of 3D fuel assembly
 - Liner/fuel interactions (affected by shocks, blast wave, radiation)
 - Laser-window and laser-fuel scattering, absorption, uniformity
 - Suppression of electron heat transport in dense plasma by magnetic fields (Braginskii models)
- Magnetic flux compression (Nernst)

Experiments to address some of these are being done on the Z pulsed power facility and the Z-Beamlet and Omega-EP lasers—many other opportunities exist!

Sandia National In principle, MagLIF designs achieve higher yields on future facilities using a cryogenic DT layer and substantial preheat we can test most of the physics of these targets on Z today!

S.A. Slutz and R.A. Vesey, Phys Rev Lett (2012); A.B. Sefkow et al., Phys Plasmas (2014).

Based on the observations we have to date, the key physics is a common issue for all magneto-inertial fusion

- Poor coupling? Integrated modeling of the initial experiments can match the observations if the energy coupled by the laser to the fuel is only 100-300 J instead of 2 kJ
- Standalone laser heating experiments with Z-Beamlet laser are consistent with low coupling through foils—an issue made worse by lack of any beam smoothing technology
- All integrated experiments in which we have increased the laser coupling to the fuel by (1) increasing laser energy, (2) using thinner foils, and/or (3) using phase plates, have produced lower temperatures and lower yields
- Some hints in existing data that increased laser coupling to fuel is also increasing early-time mix, which reduces the yield through radiation losses. This will be examined going forward.

Scaling: Over the next few years we are working to increase the drive conditions on Z to help understand how MagLIF scales. Scaling tests on Omega are also being planned.

Sandia National Laboratories

Magnets: Rovang, Lamppa ZBL: Porter *et al.* Omega: Davies, Betti, Chang *et al.*

We look forward to a strong national effort in this area and strong sandia collaboration with others in the next few years

There is a lot of work yet to do, but a promising beginning!

Our path forward during the next several years for Magnetically Driven Implosions has three broad goals

- Study the underlying science and major design elements using both "focused" and "integrated" experiments on multiple facilities (e.g., Z, Z-Beamlet, Omega, Omega-EP, universities, NIF a possibility)
- Demonstrate target scaling on Z with enhanced drive conditions and/or better fuel assembly
 - DD equivalent of ~100 kJ DT yields may ultimately be possible on Z
- Develop a path to ignition and beyond
 - Define ignition for magnetically driven implosions! (5 MJ?)
 - Develop credible scaling of targets from Z to ignition-capable (>5 MJ) & high-yield capable (~1 GJ) facilities
 - Develop the supporting technologies (pulsed power, cryo, etc.)

Our initial MagLIF results have been very promising!

- Magnetized (10 T) and laser-heated (2 kJ) cylindrical Be targets reached ~3 keV temperatures and produced fusion yield (up to 2x10¹² DD) at 70 km/s implosion velocity M.R. Gomez *et al.*, Phys Rev Lett (2014);
- Secondary neutron yield (>10¹⁰ 14 MeV) and spectra demonstrate that the fusing plasma was highly magnetized P.F. Schmit *et al.*, Phys Rev Lett (2014);
- Detailed analysis of stagnation conditions consistent with thermonuclear yield, though less energy in fusing plasma than predicted
- Additional experiments on multiple facilities focused on specific physics issues (laser-gas coupling, liner dynamics, flux compression)

The initial experiments used 10 T, 2.5 kJ laser energy, and 19-20 MA current to drive a D_2 filled (0.7 mg/cc) Be liner

M.R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014).

Our initial MagLIF experiments successfully demonstrated fusion yield consistent with a thermonuclear origin and with significant magnetization of the fusing plasma

M.R. Gomez et al., Phys Rev Lett 113, 155003 (2014); P.F. Schmit et al., Phys Rev Lett 113, 155004 (2014).

- Evidence that fuel is heated before implosion
- Evidence that fuel is magnetized during implosion
- Produces significant yield when magnetization, laser heating, and liner compression is applied
- DD yield is isotropic
- No significant yield when either radiation losses or thermal conduction losses are increased
- Fusion products are magnetized with gyro-radii comparable to plasma radius (BR ~ 0.34 MG-cm)
- Similar neutron and multi-keV x-ray bang times
- Narrow cylindrical plasma with high T_e (2.5-3 keV)
- Comparable T_i is observed along with T_e(2.5 keV)
- Significant opacity from Be liner surrounding the heated fusion fuel is observed (about 0.9 g/cm²)
- Significant down-scattered neutrons from Be liner surrounding fusion fuel is observed 0.1-1 g/cm²