Target Fabrication and Injection Challenges in Developing an IFE Reactor

Sandia National

aboratorios

WISCONSIN

GA has a long history with both ICF and IFE targets - HAPL, HIF, ZFE, now LIFE

- Extensive experience in ICF target fabrication :
 - Role: to develop ICF target fabrication and characterization techniques and provide targets
 - Collaboration with all labs as a central hub for targets since 1991
 - Several 1000's targets/year
 - Staff ~100, ~1/4 PhD's
 - Specialized equipment
 - ISO 9001:2008
- Leveraged expertise from ICF to IFE
 - Target fab
 - Injection and tracking lacksquare
 - Continued tradition of close interactions with national labs

We have a good team to tackle challenges

umachine offices **Coaters** characterization

offices

GENERAL ATOMICS

IFE

We believe that targets can be mass-produced for IFE and meet the requirements for fusion energy

- Challenges and critical issues for the IFE target supply chain have been identified
- Much work has been done on the target supply process for a number of IFE approaches much work remains ...
- Mass production of an IFE target is a difficult but manageable task
 - Will require a sustained development effort that should occur in parallel with other reactor technologies
 - Iteration with design is critical as in the case of ignition targets
 - "Nth-of-a-kind" cost studies have shown that cost-effective target manufacture is possible
- <u>This talk will summarize four different target designs</u> and the work that has been done to define manufacturing methods and to show acceptable cost
 - Show examples with different levels of maturity many are conceptual

Despite different IFE approaches there are commonalities in much of the basic required target fabrication capabilities

"Critical issues" were identified in program plans more than a decade ago....

"Chamber and Target Technology Development for Inertial Fusion Energy", W. Meier et al, April, 1999, LLNL, UCRL-ID-133629

1- Target fabrication

critical issues:

- a) Ability to fabricate target capsules & hohlraums
- b) Ability to fabricate them economically
- c) Ability to fabricate, assemble, fill and layer at required rates

Power plant studies have concluded that \$0.25 targets are needed – reduced 3-4 orders of magnitude from current targets

2- Target injection, tracking

critical issues:

- a) Withstand acceleration during injection
- b) Survive thermal environment
- c) Accuracy and repeatability, tracking

A detailed experimental plan for target injection was prepared - *Nuclear Fusion, 41. May 2001*

Studies have shown the feasibility of a cost-effective IFE target supply for energy

	IFE Concept	Target Design	Target Yield (MJ)	Est'd Cost/target for 1000 MW(e)	% of E-value
Goodin, D.T., et al, "A cost-effective	Laser Fusion	Direct drive foam capsule	~400	\$0.17	~6
farget supply for inertial fusion	HIF	Indirect drive distributed radiator	~400	\$0.41	~14
<u>Fusion 44</u> (2004).	ZFE	Dynamic hohlraum	~3000	\$2.90	~13
	LIFE	Indirect drive Pb rugby hohlraum	~132	~\$0.30	~30

Close interaction and trade off between target designers and fabricators is essential ...

Such interactions have been central to identifying and solving target challenges for the various approaches

... allows making the impossible possible

The process to build each component depends upon the material selection

Example for current LIFE target design:

Component	Material	Processes	Alternate materials	Alternate Processes	
Hohlraum	HohlraumPb; 5%Sn or Sb		Hg, High- Z, plated CH	Stamping, swaging, molding, injection- molding	
Capsule					
Ablator	ator C CVD C		CH;Be,B	micro-encapsulation, stamping, injeciton molding	
Dopant	Та	CVD	Ge	CVD	
Foam	DCPD(< 20 mg/cc)	Sol-gel	SiO ₂ (5 mg/cc)	Sol-gel	
DT	DT				
Support	С	CVD	polyimide	Spin-coat	
IR window					
Substrate	Substrate C CVD		polyimide	Spin-coat	
Metalization	AI	Sputter	Ag,Au	Evaporation	
P2 shield	Pb; 5% Sn or Sb	Stamp	High-Z	Die-cast	
LEH window	C-0		С	CVD	

For each component there are favored and alternate materials selected

LIFE

Requirements and "considerations" in designing a target and in selecting fabrication methods all have much in common

- Meet target physics requirements for fusion gain ALL
- Survive acceleration forces and thermal environment of injection ALL
- Have position determined relative to laser pointing to within ~20-100 μm (ALL)
- Have materials with low hydrogen content to reduce load to the tritium recovery system - ALL
- •••
- Have materials compatible with low cost, high throughput manufacturing techniques ALL

How do you reduce costs by 3-4 order of magnitude - major "paradigm shift" from current day targets

High-throughput manufacturing, e.g., deep drawing

Fabrication of IFE capsules for various approaches has many common features

Much work was done for the "direct approach" of making a HAPL foam capsule

Fabricate foam capsules

Microencapsulation

FTF-sized (2.4 mm OD) foam capsules

IFE (~4.6 mm OD) foam capsules

- HAPL program dealt with throughput and dimensionality issues
- Wall uniformity, surface finish, and reliable gas retention remained

Approach = apply laboratory demo for everything...

The mandrel method is the primary technique being considered for LIFE capsules

Current CVD diamond capsules satisfy NIC specifications

Foams in capsule are created by polymerizing solgel in capsule and extracting solvent

(LIFE)

2 mm diamond shell with ~50 μm thick layer of 30 mg/cc DCPD polymer

- The <u>interior foam</u> could be a pathway to avoid the difficult process of DT "beta-layering"
- Challenges include dealing with picoliter volumes, and successful wetting of the foam
- Could this approach be used for direct drive as well..?

Lead hohlraum parts can be die-cast

used in many consumer products

Die cast process: molten lead in the chamber (1) can be pumped into the die (2) where it is cooled and removed (3). Post machining on the parts (4) may be required to remove parting lines and sprue defects.

Design simplifications from learning at NIF should make these processes more realizable

How do you assemble full targets?

(LIFE)

🗢 GENERAL ATOMICS

Example of GA-robot assembling 1.5 micron polymer film to surrogate hohlraum

- Mitsubishi RV series 6-axis industrial robots with 20 μm repeatability
- Piezo stage assembly base gives 10 nm resolution
- Vision system for guidance

High-speed robots to assemble parts:

- Array processing to speed throughput
- Fixtures to provide alignment
- Features in parts for self-alignment

Components will be designed-for-assembly

Example of the details in the LIFE cost analysis

						Consumables				
					Annulizad	+ electricity +				
		Total		Total	canital		Personel			
	Number of	floorspace		canital cost	cost	renlace +	costs		Off-site	On-site
Process	machines	(sarft)	WIP (parts)	(\$)	(\$/vr)	utility(\$/vr)	(\$/vr)	Cost/target	fabication	fabrication
CVD diamond ablator	140	21.323	9,288,015	48,107,750	3,704,297	20,285,676	3,500,000	0.051	0.051	
Capsule foam	8	344	189,000	12,911,000	994,147	7,610,191	200,000	0.018	0.018	
DT Fill	33	1,850	15,315	103,535,000	7,972,195	4,997,969	825,000	0.027		0.027
Hohlraum injection-										
molded/plated										
quarters	7	1,190	150	5,783,470	5,783,470	3,558,235	175,000	0.020	0.020	
Capsule-support assy	119	4,199	27,990	9,529,366	9,529,366	5,540,891	2,975,000	0.032	0.032	
IR-window/LEH assy	310	11,338	236,435	323,230,000	24,888,710	13,221,249	7,750,000	0.081	0.081	
Hohraum-half										
assembly	128	3,072	990	2,858,856	2,858,856	3,798,729	3,200,000	0.014	0.014	
Hohlraum-capsule										
assy	80	2,256	510	3,653,188	3,653,188	2,631,750	2,000,000	0.013		0.013
DT cool	1	41	108,000	5,756,334	443,238	975,448	25,000	0.003		0.003
Recover and recycle										0.000
Facility management										
costs		2,000		500,000	38,500	70,420	6,250,000	0.013	0.011	0.002
Total process	826	47,613	9,866,405	515,864,964	59,865,966	62,690,559	26,900,000	0.272	0.226	0.046
Add material								0.303		

Total estimated target costs are ~30 cents at 15 Hz

LIFE

Layering" is the process of re-distributing the DT into a precise, uniform thickness

Single crystal beta-layering - slow (10 hours on NIC)

LIFE

<u>Alternative</u>: liquid DT wicked into nanofoam
-Liquid? (best, smooth!)
-Liquid survives acceleration?
-Is vapor pressure low enough?
-OR - possibly "quick freeze" before grooves
can form

 OR
 O

DT-filled nanofoam: pore size ~100 nm, < 30 mg/cc density to permit ignition

Highly isothermal environment necessary

Fluidized bed layering cryostat

- HAPL roughness over foam less severe...?
- Temperature oscillation helpful...

A cryogenic fluidized bed was constructed to demo mass-production layering

- Static controlled
- Scoping tests show good randomization
- Initial cryostat cooldowns to ~ 11K
- Method to "grab" one shell for characterization has been done at cryogenic conditions

Fluidized bed

Shells (empty) at 11 Kelvin

GENERAL ATOMICS

DT fill process can be performed in large batches in a pressurized, room temperature chamber

DT fill in 300 K, pressurized chamber

- 1) Place capsules in pressure chamber at ~264 atm
- 2) Capsules are filled with DT gas
- 3) Apply plug
- 4) UV cure epoxy-coated plug
- 5) Reduce temperature to 77 K; evacuate chamber

Possible plug configurations feature UV glue-coated carbon plugs

Sten	External pressure	Temperature (K)
	(attil)	
Capsules in chamber	0	300
DT fill	264	300
Plug fill hole	264	300
Lower chamber temperature	68	77
Evacuate DT from chamber	0	77
Transport	1	77
Assemble capsule into hohlraum	6	300
Transport to injector	1.6	77
Prepare for injection	0.4	18
Inject into chamber	0.4	17

Higher temperatures enable bonding; lower temperature during transport reduces diffusion through the ablator parts.

Room temperature processes enable polymer bonds

The HAPL program demonstrated several acceleration options ...

The HAPL program demonstrated (gas-gun):

-Velocity ≥400 m/s, time jitter 0.5 ms, 2-piece sabot separation in vacuum -Target placement accuracy of 10 mm at 17 meters standoff (1 σ) ~590 µrad

HAPL redesigned chamber to reduce heating, and allow slower injection

Range of options, including:

- 1. Gas-gun for >400 m/s
- 2. Induction accelerator

With slower injection, accuracy demo'd at 50 m/s (w.o. 2-piece sabot) → 4 mm at 17 m (1σ), with ~1 mg projectiles (direct drive capsules, 235 µrad)

"Sabot separation" was a feature of direct drive injection demo with a gas gun

The HAPL program demonstrated sabot separation in-flight:

-Sabot with support-film to avoid point-loading

-Velocity ≥400 m/s

2-piece sabot to protect target

Deflector for sabot pieces <

Repeated sabot-separation and deflection was demonstrated

Electrostatic steering has been shown to improve placement accuracy (direct drive)

In-flight target steering could be used to improve accuracy of a target injection system

Target heating on injection has been modeled - indicates low heating of DT ice

The capsule heats from the circulating He in the second compartment DT= ~85 mK

The front IR shield confines the warming helium to the front quarter of the target

Circulating Helium removes heat from the LEH window and gives it up to the cool Pb side walls

Stress during injection has been modeled - DT stress depends on membrane wrap angle

•Also used to support capsule in hohlraum

🕻 GENERAL ATOMICS

Tracking and engagement- hitting a target "on the fly"

- Direct drive requirement = alignment of lasers and target to 20 μm
- First step demo "ex-chamber" sensors, prediction to ~500 μ m

- This evolved into "continuous" tracking (in-chamber)
- System using lasers, optics and fast steering mirror
- Also "glint" from target ~1 ms before the shot aligns optical train (target itself is the reference point)...

L. C. Carlson, et al, "Improving the Accuracy of a Target Engagement Demonstration," Fusion Science and Technology 56 (1) July 2009

Poisson spot on CCD

Tracking - optical table demo of "hit-on-fly" engagement

GENERAL ATOMICS

Tracking beams determine the target's location, timing, transverse position, and tilt

- Tracking beam array mounted on mechanically isolated structures
- Defines the shot coordinate system

Extracting the timing, the velocity, and the target tilt from the tracking beams

💠 GENERAL ATOMICS

Each beam's pointing offset relative to the target is (LIFE) determined immediately before the shot

target at a specific distance from the shot point (6-7mm) The final optic of each

beam collects light scattered from the target and sends it back along the main beam path

An engagement sensor compares the direction of light from the target with the laser alignment beam

Working together with SNL and others, target systems for Zpinch driven IFE were conceptualized

.... Design concepts indicate sufficient time available for cryogenic target assembly and handling

The ICF community has a common viewpoint

- Demonstration of laboratory ignition will establish that the physics underpinning IFE exploitation is fundamentally sound.
- IFE is a field in which the US is a clear world leader academically, technologically and industrially.
- We have an opportunity to capitalize on this leadership position over the next few years, and leverage prior substantial defense program investment.
- Recent action by the DOE to propose a new IFE development program and secure a stable home for IFE is timely and very welcome.
- Moving forward, the IFE program needs to focus on the requirements of an operating power plant, with design choices managed at a systems-level.
- The inherent modularity and separability of IFE provides significant benefits when considering power plant development, operations , and evolution.
- Taking advantage of significant prior research, future development activities in this program need to include IFE scale science and technology development and demonstration.
- IFE is a national scale program requiring a coordinated effort by academic, Laboratory, and industrial partners.
- A phased program with competition and unambiguous selection criteria is needed

Summary and conclusions - target technology

- Targets are a major component of any IFE approach
- Critical issues for the IFE target supply identified
- Much work has been done on the target supply process for a number of IFE approaches
- Mass production of an IFE target is a difficult but manageable task
 - Will require a sustained and properly supported development effort that should occur in parallel with other reactor technologies
 - "Nth-of-a-kind" cost studies have shown that cost-effective target manufacture is possible
- We have summarized here four different target designs and the work that has been done to define manufacturing methods and to show acceptable cost

We believe that targets can be mass-produced for IFE and meet the requirements for fusion energy

