Technology for Polar-Drive Ignition on the NIF
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Polar-drive ignition could be tested on the NIF

with a few modest modifications to the facility
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e Beam-smoothing improvements:

— Multi-FM 1-D smoothing for spectral dispersion (SSD) provides the
required beam smoothing with simple modifications to the NIF facility

— Beam smoothing is only required at the beginning of the laser pulse,
which minimizes stress on the laser

— Polar-drive phase plate and polarization-smoothing designs are
underway

— A NIF PD beam-smoothing demonstration on OMEGA EP is planned
in FY12

e Direct-drive target technology:

— NIF-scale fill-tube targets have been demonstrated and are being
optimized

— Concepts for a polar-drive ignition target insertion cryostat (PD-ITIC)
are being developed
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Implementing polar drive (PD) requires five changes
on the NIF for an ignition demonstration
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Add multi-FM fiber 6 New PD phase plates (2w)
o front end and combine | Q and polarization plates (3w)
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e New PD ignitiontarget
insertion cryostat (PD-ITIC)
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Laser nonuniformity imprint is minimized by optimizing
smoothing by spectral dispersion (SSD)
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e SSD divergence (AOggp) determines the asymptotic uniformity

* Increasing the inverse coherence time (t,~1) allows the target to
experience a smoother spot for a longer period
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MultiFM 1-D SSD provides required beam smoothing

performance with minimal impact on the facility
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Inverse coherence time versus far-field spatial frequency
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* Traditional SSD systems using single-frequency phase modulation have
low smoothing rates for many important spatial modes (¢ < 150)
e MultiFM 1-D SSD is a new approach that

— provides better smoothing rates with lower total bandwidth
(esp. for PD pulse shapes with picket prepulses)

— can be implemented on NIF with simple modifications
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An optimized MultiFM configuration that achieves
high gain in polar drive simulations has been identified
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e MultiFM 1-D SSD employs technology developed for the
telecommunications industry

— 40-GHz phase modulators and drive electronics

— UV bandwidth:  Afigi, = 500 GHz (effective bandwidth)

— SSD divergence: AOggp = 100 urad (half angle at full beam)
e DRACO 2-D simulations with all nonuniformity sources: Gain = 32
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Dynamic Bandwidth Reduction (DBWR) minimizes stress

on the laser with little affect on target gain
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MultiFM 1-D SSD beam smoothing only needs to be applied
to pickets in the polar-drive point design pulse shape.
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A MultiFM 1-D SSD beam-smoothing demonstration
on OMEGA EP will validate laser imprint performance
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*S. P. Regan et al., J. Opt. Soc. Am. B 17, 1483 (2000). **T. R. Boehly et al., Laser Part. Beams 18, 11 (2000).
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The focal-spot conditioning strategy for polar-drive

ignition includes phase and polarization plates
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The NIF final optics assembly (FOA) will include:

 Phase plate between the frequency conversion crystals (2w)
e Polarization plate (3w)
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Phase plates and polarization smoothing are being
designed to efficiently and uniformly couple energy
to polar-drive targets
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* Phase plates efficiently deliver laser energy with a desired
focal pattern to achieve required irradiation uniformity.

e Polarization smoothing instantaneously improves targeted
modes of focal-spot irradiance modulation.
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A NIF fill-tube target has been demonstrated that will be

optimized to meet polar-drive ice layer specifications
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D, layer (297 um) with mid-IR laser layering

Target: 2.95-mm OD, 20-um wall
Fill tube: 30-um OD at shell wall

Cryogenic layering sphere

Facility renovations and equipment upgrades are underway at
LLE to demonstrate NIF PD cryogenic layering with DT targets.
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A polar-drive ignition target insertion cryostat (PD-ITIC)
will minimize the impact on the NIF facility
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* A polar-drive target that survives >3-s exposure to the target chamber
is required to use existing “clam-shell” shroud design

o Use existing NIF space envelope and cryogenic support systems
(TAS, LLCS, TARPOS)

Existing TAS and LLCS place challenging constraints on a
PD-ITIC design that will limit size of the cryogenic shroud.
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Summary/Conclusions

Polar-drive ignition could be tested on the NIF

with a few modest modifications to the facility
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e Beam-smoothing improvements:

— Multi-FM 1-D smoothing for spectral dispersion (SSD) provides the
required beam smoothing with simple modifications to the NIF facility

— Beam smoothing is only required at the beginning of the laser pulse,
which minimizes stress on the laser

— Polar-drive phase plate and polarization-smoothing designs are
underway

— A NIF PD beam-smoothing demonstration on OMEGA EP is planned
in FY12

e Direct-drive target technology:

— NIF-scale fill-tube targets have been demonstrated and are being
optimized

— Concepts for a polar-drive ignition target insertion cryostat (PD-ITIC)
are being developed
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