Technology for Polar-Drive Ignition on the NIF

J. D. Zuegel
University of Rochester
Laboratory for Laser Energetics

NAS/NAE Committee on the Prospects for IFE Systems
San Ramon, CA
29 January 2011
Polar-drive ignition could be tested on the NIF with a few modest modifications to the facility

- Beam-smoothing improvements:
 - Multi-FM 1-D smoothing for spectral dispersion (SSD) provides the required beam smoothing with simple modifications to the NIF facility
 - Beam smoothing is only required at the beginning of the laser pulse, which minimizes stress on the laser
 - Polar-drive phase plate and polarization-smoothing designs are underway
 - A NIF PD beam-smoothing demonstration on OMEGA EP is planned in FY12

- Direct-drive target technology:
 - NIF-scale fill-tube targets have been demonstrated and are being optimized
 - Concepts for a polar-drive ignition target insertion cryostat (PD-ITIC) are being developed
Implementing polar drive (PD) requires five changes on the NIF for an ignition demonstration:

1. Add multi-FM fiber front end and combine with existing system.
2. Add new SSD grating to 48 preamplifier modules (PAM).
3. New PD phase plates (2ω) and polarization plates (3ω) in final optics assembly.

Additional details:
- Far-field intensity ($\times 10^8$)
- Divergence (μrad)
Laser nonuniformity imprint is minimized by optimizing smoothing by spectral dispersion (SSD)

Single-beam laser nonuniformity

- SSD divergence ($\Delta \theta_{SSD}$) determines the asymptotic uniformity
- Increasing the inverse coherence time (t_c^{-1}) allows the target to experience a smoother spot for a longer period

σ_{rms} (%), ℓ-modes 30:60

$\Delta \lambda \equiv$ Bandwidth
$N_{cc} \equiv$ Color cycles
$f_m \equiv$ Modulator frequency

$\Delta \theta_{SSD} \propto \frac{\Delta \lambda \times N_{cc}}{f_m}$
MultiFM 1-D SSD provides required beam smoothing performance with minimal impact on the facility

- Traditional SSD systems using single-frequency phase modulation have low smoothing rates for many important spatial modes ($\ell < 150$)
- MultiFM 1-D SSD is a new approach that
 - provides better smoothing rates with lower total bandwidth (esp. for PD pulse shapes with picket prepulses)
 - can be implemented on NIF with simple modifications

Inverse coherence time versus far-field spatial frequency

- t_c^{-1} (GHz)
- ℓ mode

- MultiFM 1-D SSD (0.5 THz)
- 2-D THz SSD
- 1-D SSD
An optimized MultiFM configuration that achieves high gain in polar drive simulations has been identified.

- MultiFM 1-D SSD employs technology developed for the telecommunications industry
 - 40-GHz phase modulators and drive electronics
 - UV bandwidth: $\Delta f_{\text{total}} = 500$ GHz (effective bandwidth)
 - SSD divergence: $\Delta \theta_{\text{SSD}} = 100 \mu\text{rad}$ (half angle at full beam)
- **DRACO** 2-D simulations with all nonuniformity sources: Gain = 32
Dynamic Bandwidth Reduction (DBWR) minimizes stress on the laser with little affect on target gain.

MultiFM 1-D SSD beam smoothing only needs to be applied to pickets in the polar-drive point design pulse shape.
A MultiFM 1-D SSD beam-smoothing demonstration on OMEGA EP will validate laser imprint performance

Integrate NIF PAM into OMEGA EP

Verify laser imprint with foil-target experiments on OMEGA EP*

Verify smoothing with equivalent target plane measurements*

Simulation of method

Far-field intensity ($\times 10^8$)

<table>
<thead>
<tr>
<th>Time (ns)</th>
<th>Far-field intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

In progress

Early FY12

Demonstrate MultiFM Seed Source

Divergence (μrad)

E19672

With SSD

<table>
<thead>
<tr>
<th>Amplitude (μm)</th>
<th>Time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-3</td>
<td>0.0</td>
</tr>
<tr>
<td>10^-1</td>
<td>0.5</td>
</tr>
<tr>
<td>10^1</td>
<td>1.0</td>
</tr>
<tr>
<td>10^2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

T. R. Boehly et al., Laser Part. Beams 18, 11 (2000).
The focal-spot conditioning strategy for polar-drive ignition includes phase and polarization plates.

The NIF final optics assembly (FOA) will include:
- Phase plate between the frequency conversion crystals (2ω)
- Polarization plate (3ω)
Phase plates and polarization smoothing are being designed to efficiently and uniformly couple energy to polar-drive targets.

- Phase plates efficiently deliver laser energy with a desired focal pattern to achieve required irradiation uniformity.
- Polarization smoothing instantaneously improves targeted modes of focal-spot irradiance modulation.
A NIF fill-tube target has been demonstrated that will be optimized to meet polar-drive ice layer specifications.

Facility renovations and equipment upgrades are underway at LLE to demonstrate NIF PD cryogenic layering with DT targets.
A polar-drive ignition target insertion cryostat (PD-ITIC) will minimize the impact on the NIF facility

- A polar-drive target that survives >3-s exposure to the target chamber is required to use existing “clam-shell” shroud design
- Use existing NIF space envelope and cryogenic support systems (TAS, LLCS, TARPOS)

Existing TAS and LLCS place challenging constraints on a PD-ITIC design that will limit size of the cryogenic shroud.
Summary/Conclusions

Polar-drive ignition could be tested on the NIF with a few modest modifications to the facility

• Beam-smoothing improvements:
 – Multi-FM 1-D smoothing for spectral dispersion (SSD) provides the required beam smoothing with simple modifications to the NIF facility
 – Beam smoothing is only required at the beginning of the laser pulse, which minimizes stress on the laser
 – Polar-drive phase plate and polarization-smoothing designs are underway
 – A NIF PD beam-smoothing demonstration on OMEGA EP is planned in FY12

• Direct-drive target technology:
 – NIF-scale fill-tube targets have been demonstrated and are being optimized
 – Concepts for a polar-drive ignition target insertion cryostat (PD-ITIC) are being developed