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The Z pulsed power generator provides a 
compact MJ-class target physics platform 

22 MJ stored energy 

26 MA peak current 

100-300 ns pulse length 

10,000 ft2 

Constructed in 13 Months 

Cost ~ $4/stored J 



Large currents and the corresponding magnetic fields 
can efficiently create high energy density matter 
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Magnetic fields and currents can push conductors around:  
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Magnetically-Driven Implosion 

100 MBar at 26 MA and 1 mm  

Magnetic drive can reach very high 
drive pressures if current reaches 
small radius 

Magnetic drive is very efficient at 
coupling energy (no energy wasted 
on ablation) 
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Prad ~ 330 TW,  Yrad ~ 2 MJ 

> 10% wall plug efficiency 

Wire array Z-pinches efficiently radiate 
soft x-rays 



Integrated LASNEX simulations demonstrate 400+ MJ 
fusion yield in a pulsed-power z-pinch driven hohlraum 

primary
 hohlraum 

w/ z-pinch 

secondary
 hohlraum 

w/ capsule 

symmetry control
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Double z-pinch hohlraum fusion concept 

DT gas 2180 μm 
(0.3 mg/cm3)

solid DT 280 μm

Be (0.2% Cu) 190 μm

High yield capsule design 

1D capsule yield 520 MJ 

2D integrated yield 470 MJ  

Fuel density at ignition 
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R. A. Vesey, M. C. Herrmann, R. W. Lemke et al.,
 Phys. Plasmas (2007) 

Inefficiencies lead to only
 0.04% of the driver wall plug

 energy in the fusion fuel 



Direct fuel compression and heating with the magnetic 
field could be 25X more efficient than indirect-drive 

A near term directly driven concept we can test is  Magnetized Liner 
Inertial Fusion 

Other High Yield/ High Gain concepts are also being explored 
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risk ~ 1/maturity 

Double
-ended

 hohlraum 

efficiency 

~1/cost 

~1/driver size 

Direct fuel
 compression 

 ~ 0.04% 

~ 0.5 to 1% today 

~ 3% in an IFE system 
drive 

current 

I 



compressed 

axial field 

3. The Z accelerator can provide the drive current
 which generates an azimuthal drive field (pressure)
 to efficiently implode the liner (Z pinch) at 50-100 km

/sec 

and compress the axial field by factors of 1000 

The Z facility provides a unique opportunity to test the
 Magnetized Liner Inertial Fusion (MagLIF) concept 

cold deuterium/tritium 

gas (fuel) 

Metal (beryllium) 

Cylindrical Liner 

1. A 10-30T axial magnetic field 

is applied to inhibit thermal conduction
 and enhance alpha particle deposition
 before the implosion begins 

 laser 

beam 

Laser  

preheated  

fuel 

2. Z Beamlet can preheat the fuel to
 ~100 - 1000 eV to reduce the
 require compression needed  

*  S. A. Slutz et al., Physics of Plasmas 17, 056303 (2010). 



Simulations indicate scientific breakeven  
(fusion energy out = energy deposited in fusion fuel)  
may be possible on Z 

INITIAL CONDITIONS 

Peak Current:   27 MA 

Be Liner R0:   2.7 mm 

Liner height:   5 mm 

Aspect ratio (R0/ R):  6 

Initial gas fuel density:  3 mg/cc 

Initial B-field:   30 T 

FINAL CONDITIONS 

Energy in Fusion Fuel  ~200 kJ 

Target Yield:   500 kJ 

Convergence ratio (R0/Rf):  23 

Final on-axis fuel density:  0.5 g/cc 

Peak avg. ion temperature:  8 keV 

Final peak B-field:   13500 T 

Peak pressure:   3 Gbar 2D yield for a DT target ~ 350 kJ (70% of 1D)  

Radius (μm) 

The magneto-Rayleigh Taylor instability is the
 biggest concern for this concept 

60 nm surface roughness,  

80 (μm) waves are resolved 



The physics issues for direct magnetic-drive targets 
are similar to those for other inertial fusion concepts 

We are conducting a vigorous research program to validate the general 

class of magnetically-driven targets on the Z facility at the MJ target scale 
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Instability growth 

Convergence ratio 

Implosion time and velocity 

Pusher-fuel mix 

r-  symmetry 

Driver coupling 

Pusher adiabat 

Fuel Preheat 

Stabilization techniques 

Fuel Premagnetization 



We have already developed most of the capabilities 
required to test MagLIF on the Z facility, rest are imminent 
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Magnetic Coil

 Testbed (MCTB) 

8mF, 900kJ

 capacitor banks 

125ft3 Vacuum

 Chamber 

50mm coil

 testbed 

High-quality target fabrication on site 

Cryogenic cooling of liner targets
 has been demonstrated (liquid D2) 

Test facility for coil development on site 

10 T coil designs allowing diagnostic
 access on Z will be tested 



We observe excellent agreement between theory and 
experiment for single-mode MRT growth experiments 
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D. Sinars, S. Slutz et al., Phys. Rev. Lett. (2010) 



A levitated shell version of MagLIF could give  
high yield and high gain on a larger facility  
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INITIAL CONDITIONS 

Peak Current:   61 MA 

Al Liner R0:   4.4 mm 

Liner height:   10 mm 

Aspect ratio (R0/ R):  6 

Initial gas fuel density:  10 mg/cc 

Initial B-field:   10 T 

FINAL CONDITIONS 

Target Yield:   4.8 GJ 

Target Gain:   700 

Convergence ratio (R0/Rf):  22 

Final on-axis fuel density:  9.3 g/cc 

Final peak B-field:   12500 T 

DT shell Aluminum Liner 



Summary 

Pulsed power is an efficient, inexpensive way to create matter at high 
energy densities 

Magnetically driven implosions offer a path to coupling much higher 
fractions of the driver stored energy to fusion fuel 

Magnetized Liner Inertial Fusion (MagLIF) offers a near term chance for 
testing our understanding of magnetically driven implosions. If 
successful, would lead to breakeven with DT. 

Experimental data on the Magneto-Rayleigh Taylor instability is 
promising, we hope to do an integrated MagLIF test in 2012. 

A high-yield (GJs), high-gain (>500) MagLIF design is under 
development. Much of the relevant physics can be tested on Z. 



Backup 
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A large, embedded magnetic field significantly expands 
the space for fusion self heating 

Fuel areal density (g/cm2) 
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*Basko et al. Nuc. Fusion 40, 59 (2000)  
The r needed for ignition can be
 significantly reduced by the presence of a
 strong magnetic field  

•inhibits electron conduction  

•enhances confinement of alpha
 particles 

Lower r means low densities are needed
 (~1 g/cc <<  100g/cc) 

Pressure required for ignition can be
 significantly reduced to ~5 Gbar  

(<< 500 Gbar for hotspot ignition) 

Large values of B/  are needed and  

therefore large values of B are needed. 

B~ 50-150 Megagauss >> B0 -> flux
 compression is needed 


