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“CHS” VS llFI”

Central Hot Spot (CHS) Ignition Fast Ignition (Fl)
Isobaric-hot spot from implosion Isochoric-fast heating
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Fuel 1000 gcm™ pr= 3.0 gcm*
Spark 100 gem™ pr = 0.3 gem™
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Fl Potentially Has Advantages over CHS

Fl is conceived as a “2"d Generation Scheme” for ICE

Projected
| Fast Ignition | Gain

Laser Energy (MJ)

A Gain ~100 at a compression energy of
1MJ is ideal for IFE
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Ignition Schemes in Fl

Electrons (hole-boring) Electrons (cone-guided)
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Principle Steps in Cone- Guided FlI

1. Compress DT fuel to high p, pR
around cone tip; cone tip must
survive Gbar implosion pressure

| 0.5-1.5 MJ, 20ns
compression drive

100-200 kJ,
20 ps ignitor
pulse

' 3. Relativistic electron
transport in HED
plasmas; collective
transport, filamentation,
2. Relativistic laser interaction core heating & burn

(1>102° W/cm?) & electron generation |

No code capability currently exists that can model this physics self-
consistently; Fl program is developing ability to link codes
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Encrgy (kJ)

Min. Ignition Energies (Atzeni 1999)

power and range are injected into
DT sphere

Pulse Length Required: ~20 psec (@300g/cm3)

Ignition requirement is pr,, <1.2g/cm?, T,212 keV

Parallel beam of particles with constant stopping

DT, density p

gniform density |2 rp

particle beam

1

\

20 kJ Ignition depends
on this spatial input
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First Hot Electron Yield Enhancement
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Q 2.5kJ, 1.2 ns flat top
pulse, 2o compression

a 350 J, 0.5 ps ignitor
pulse

Gekko XII (2002)

0 7 um CD shell, 500 pm
diameter

0 Imploded core reaches
~ 50-100 g/cm?3 and 30-
50 um diameter

Gekko Xl Laser Facility CD shell + Au cone Neutron yield

Neutron yield

— - —

104

0
Heating laser power (PW)
O 1000x increase in
neutron yield with
ignitor pulse
O Temp increase from
400 eV to 800 eV
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Many Active Fl Programs World-wide
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IST, Lisbon
UPM, Madrid, ...

ILE, Osaka University
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Reality of Fl: Issues

Issues:
< SCIENTIFIC

> Divergence of hot electrons
»> Compression of Target with Cone

“TECHNOLOGY

> Facilities
» Target Fabrication
> Ignition Laser Driver
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Science Issue: Electron Divergence

X-ray
image
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Full Scale FI Modeling shows large angles

PIC LPI followed by hybrid charge transport calculations

predict that the average divergence angle in hot DT is 529

Because of this large divergence, the “point design” is pushed
towards having the hot electron source as close to the
compressed core as possible. Under any reasonable cone-core
offset scenario, the modeling result is that the ignition energy
required jumps from ~20kJ for collimated electrons to well over
200kJ.

As we discuss below, control of the hot electron

divergence is the major physics and technology issue
confronting Fl
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Technology Issue: Facilities

1 MJ Compression

100kJ High Gain Fl | 149 i) 1gnition
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Science Issue: 2D Hydro Design

INDIRECT DRIVE
DT mass = 2.75 mg

‘Peak density 310 g/cc
*Drive 1.4 MJ
*Gain =106

Stand off 110 p of cone
tip from core

Source
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Science Issue: Cone Target Compression

OMEGA-EP BACKLIT IMPLOSION
> EP-Backlight Compton

Radiography @ 100 keV

> Empty CD Shell, 40p thick
> Reentrant Cu Cone

> pR ~180mg/cm?
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Technology Issue: Cones (current GA)

High Z metal parts

* Foam-lined plastic shells

* Robotic assembly

* LIFE (indirect drive) targets:

costed @50.30/target
delivered
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Technology Issue: Ignition Laser

Full Scale short-pulse laser driver

= Energy TBD (at least 100kJ)
" Pulse Length 20psec
= Possible 2w conversion

= High Contrast ratio
 Wall-Plug Efficiency
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Focused Efforts: Advanced Modeling

3D kinetic PIC (High Resolution)

LASNEX, HYDRA
rad-hydro codes
implosion & burn

PSC PIC code
laser absorption

2D/3D rad-hydro

(hydrodynamics,
radiation transport,
31_3 hybrld transport LSP, ZUMA hybrid codes ionization kinetics,
(kinetic fast electrons electron transport burn, etc.)
with fluid background

plasma)
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Focused Efforts: Advanced Modeling

= 200kcpu-h @2048 cpus on ATLAS

=  Simulate 40 um diameter laser pulse for 2 ps duration

= |=1.4x10%20 W/cm?, 120x160 um box, 50 cells/um, 32e+32i ppc
3 2[yum] = 2[um]

Nh/ N

3.5

n7z-

[wA]A
N

Asuap A3uaua pRY W3

N7+

= These simulations provide the first realistic electron source distributions for
subsequent transport calculations
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Focused Efforts: Advanced Modeling

= 3D simulation initialized with axisymmetric profiles at beginning of electron pulse
= 47.7 million zones in HYDRA mesh with 100 million IMC photons run on 1024 processors

= 36 millions zones in Zuma mesh — 1 um resolution on each mesh

Fully integrated 2D/3D capsule implosion,
core heating and burn simulations

Gold cone

y D
=0.15 =0.10 -0.05 .00 0.05 [
Z fem)

Diamond cone tip 3.51 g/lcm?
Beryllium 1.85 g/cm?® 17.5 um

t=32.4ns

(ca)

0.020

0.010

=20 =10

Electron energy
deposition rate
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Many Groups Contribute to Modeling

PSC PIC code |

laser abso==~+~~

ZUMA hybrid code
electron transport

LSP (Voss, LLE, OSU, UCSD)
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Sentoku et al.
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Fast Electron Core Heating at OMEGA EP

L —— ——¢ 2.5x10" | @ 10.mtip |
, A 40 um tip
old cone 2 0x1 07

G

T

T
©
Shell material CcD 'S 1.5x10't
Shell diameter ~870 um g i L
J Shell thickness ~40 pum _E 1.0x1 07 i K
[ i \
. LLE P
Implosion 5.0x10° - *‘_ | L
Energy ~20 kJ (54 beams) i +
Wavelength 351 nm oo - . T .
Pulse shape Low-adiabat, o = 1.5 33 34 35 36 3.7 3.8 3.9 4.0
Pulse duration ~3ns . :
Implosion velocity |~2 x 107 cm/s OMEGA EP arrival time (ns)

Demonstration of fast electron core
heating under well understood conditions
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Control of Hot Electron Divergence

Whether fast electron Fl is viable depends

on what happens to the hot electrons
in this region

If they leave the cone tip collimated, a

point design with ignition energies <100kJ
Is likely

If they leave the cone tip spread into 2mit
NO reasonable point design is possible

TWO DIRECTIONS FOR MODELING AND DESIGN:
»  External Magnetic Fields
»  Self-generated Resistive Magnetic Fields
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Divergence: Applied B Fields

: Hot
Plasma density (g/cm3) B
electrons d H
400 — =V x| + VN x
300 ot Y lh ’, ih
200 » .
r ‘ 100 CD Electron collimation by
B fields generated by
0 50 100 150 resistivity gradients*
z(um)
High-
Vi1 resistivity
\[ / material
Cu cone Al cone with Cu Insert Al cone with Cu wire N < ow-
—_— \ resistivity
material
- B field
§ B — )

Hot Hot Hot
electrons electrons electrons

Energy of Input Electrons
Energy coupled to the “ignition region” =40 kJ

2.7 kJ (7%) 4.5 kJ (11%) 18 kJ (45%) b
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Divergence: Ap

plied B Fields

External magnetic field amplified
by compression

Bfinal = Bseed (I'-'{initiaI/Rfinal)2

B=0.1 MG
(Seed field)

Place target in seed field of 0.05 MG;
during implosion the core will effectively

compress the field region by ~30 yielding

B during hot electron transport ~50 MG

field

If details of B.

nitial cONfiguration can be

worked out, Fl at 100 kJ appears
possible
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Proton Fl Concept

Aluminum Isochoric Heating vs. D /R Ratios

Proton Fi |
. ¥ N
Shell-in-cone — I\
:. / . N
i F AN
7 N
Experimental Demonstration
Foscused Proton Isocoric Heating
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+29 Cu cone

0020

amms

5 aoma) i X

0,008 | vvecis

0,000
-0.00 an0 a.a1 .07
2 {em)

LSP Set up for Proton FlI
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Proton FI has only recently
been subjected to the same
level of scrutiny as electron Fl

Potential:

e Laser : elec eff. ~80%

 electron : proton eff. ~30%

* Proton frac in hot spot ~30%

e Laser energy for ignition ~180kJ

* Requires, e.g 2x1020 Wcm-2 on
200 p diameter for 4 ps at 1.06 p

Scarlet Laser Facility (SLF)
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Going Forward: Short Term Objectives

CODE DEVELOPMENT
> Integration PIC with Hydro 3D/2D
> EOS and lonization, material properties in transport codes

MODELING
> Long Pulse (Hydro—cone suvival)
> Short Pulse LPI (prepulse), Direct Comparison to Experiment
> Direct Support of Point Design Effort

EXPERIMENT:
> Electron Generation and Transport at EP Conditions
» 10 vs 20 Dependence of LPI (pre-pulse effects)
> Direct Experiment/Full Scale Modeling (Benchmark)

3/30/2011
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Going Forward: Milestones and Metrics

FIVE YEAR METRICS:
> “HARD” Point Design from Fully Integrated Modeling
> Sub-Critical Integrated Tests on Omega-EP
> Full Scale Hydro compression on NIF

TEN YEAR METRICS:
> Design, Construction and Test of Modules for Ignition Laser
> Test at Full Scale Compression (NIF) -2
Sub-Ignition (NIF_ARC)
> Capsule Design Realized on Production Scale

TWENTY YEAR METRIC:
> Design, Construction of FI-IFE Power Plant

3/30/2011
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SUMMARY AND CONCLUSIONS

v'Fast Ignition continues to hold great promise for IFE
Fundamentals of intrinsic high gain and relaxed target specs are significant and
worthy of intense research efforts

vInitial implementation of FI concepts, ones that encouraged speculation

of problem-free development, were overly optimistic
Nearly 10 years of International Effort has led to paths for solutions to problems;
only in the last 3 years have we seen the computational and
experimental capabilities to analyze Fl issues competently

v'Fast Ignition research draws from and leverages 50 years of NNSA

investment
Computational and Laser Facilities needed for advances are in place;,
NIF and Omega-EP (both existing) will validate core heating and compression
prior to any high gain demonstration

v'Fast Ignition research has a large, scientifically vigorous academic base

that feeds NNSA'’s workforce
FI research gave birth to HEDP science in many universities world-wide
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