US Strategies for an Innovative Stellarator-Based FNSF

M.C. Zarnstorff
For the US Stellarator Steering Committee

FESAC Strategic Planning Panel
3 June 2014
Context

FNSF: fully integrated fusion plasma and technological environment
- Long-pulse, high duty factor
- Integration testing and validation; tritium breeding

Stellarators: helical magnetic field torus, like tokamaks
- full field from 3D coils, 3D plasma shaping
Stellarators Already Provide Advanced Characteristics

Steady-state: field from 3D coils, not plasma current

- No disruptions.
- No current drive \Rightarrow potential high fusion gain, higher reliability
- Quiescent high-beta \geq 5%,
- Energy confinement similar to tokamaks.
- Very high density limit \Rightarrow potential higher fusion reactivity
 - colder edge, for easier divertor
 - reduced fast-ion instability drive

- No need for feedback stabilization \Rightarrow simplify plasma control,
 - reduce diagnostics needed in fusion environment

Closes some technical gaps, reduces some R&D needs.
Simplifies FNSF and DEMO designs.
Need to demonstrate these capabilities can be simultaneous
Stellarator Research is Active World-wide

Large international programs:
• LHD, R=3.7m superconducting, partially optimized (Japan, 1998)
• W-7X, R=5.5m superconducting, quasi-omnigenous (Germany, 2015)

US:
• Historically, strong theory program.
 – Methods to optimize confinement in 3D
 – quasi-symmetry (QS): tokamak-like transport
• Pioneering novel Concept Exploration experiments, e.g.
 – HSX, quasi-helically symmetric
 – CTH, disruption onset thresholds
• NCSX project: partially built mid-scale experiment
 – study sustainable high performance, quasi-axisymmetric
 – synergy: tokamak-like transport and stellarator stability.
QS Stellarator FNSF has Moderate Size

<table>
<thead>
<tr>
<th></th>
<th>R (m)</th>
<th>(<a>) (m)</th>
<th>B (T)</th>
<th>(\beta) (%)</th>
<th>Pfus (MW)</th>
<th>Neut. Wall load. (MW/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W7-X-like</td>
<td>18</td>
<td>2.1</td>
<td>4.5</td>
<td>3.6</td>
<td>1500</td>
<td>0.9</td>
</tr>
<tr>
<td>H.Wobig et al, NF 43 (2003) 889</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIES-CS-like</td>
<td>4.75</td>
<td>1.05</td>
<td>5.6</td>
<td>6</td>
<td>529</td>
<td>2</td>
</tr>
<tr>
<td>J.Menard et al, NF 51 (2011) 103014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LHD-like</td>
<td>14.4</td>
<td>2.5</td>
<td>4.7</td>
<td>5</td>
<td>3000</td>
<td>1.5</td>
</tr>
<tr>
<td>A. Sugara et al, FED 87 (2012) 594</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All target FNSF neutron flux. All are ignited or very close to ignition.

Similar to power plant designs -> prototype reactor integration issues directly

All are high gain. Would produce net power: can be pilot plants.
Lack of Current Drive Has Practical Benefits

- Minimizes wall penetrations & blocking of breeding blankets

- Relieves engineering constraints. Provides design margin on performance. Makes design easier.

- Simplifies sub-systems and control

- Strongly reduces recirculating power. Allows net power production at lower fusion power.

For stellarator DT experiments:
Component Test Facility = High Q_{DT} = Pilot-plant
Stellarator R&D Gaps to FNSF

- Integrated high performance of QS-optimized stellarators
 - Simultaneous high beta, high confinement, without disruptions. Benign ELMs.
 - Requires experimental validation

- Simplified coil design, via new coil strategies or simpler shape

- Predictive capability for plasma behavior and operation
 - Operating limits
 - Validation of theoretical models; including relationship to tokamak physics understanding.

- Effective divertor design, compatible with high performance

- Impurity and fusion ash accumulation control
US Stellarator Initiative is Needed (1)

1. Strong international collaboration with W7X, LHD (G. Wurden)
 — W-7X will be the first large, fully-optimized 3D experiment
 — Long-pulse, high-power, high-beta capabilities. Divertor program.
 — But, not quasi-symmetric – hard to connect with ITER.
 — Project to very large FNSF or DEMO.

2. US mid-scale QS experiment (J. Harris)
 — Integrated high performance for QS; divertor; impurity accumulation; predictive understanding
 — QUASAR using NCSX components (~4 years)
 Theory-based design for this mission
 — Managed as National & International collaboration.
US Stellarator Initiative is Needed (2)

3. Targetted exploration experiments (O. Schmitz)
 - Divertor design development
 - Simpler coils
 - Tests of turbulence optimization

4. Strengthened theory & computation program (M. Landreman)
 - Predictive understanding and modeling
 - Configuration optimization & improvement
 - Simpler coil design
 - Design of next-step experiments
• Major reviews of Initiative in

 ~2015 (start)

 ~2024 (progress)

 ~2029 (readiness for next steps, decision on approaches)
Summary

• Stellarators can be a game-changer. Provide many of the needed characteristics for a FNSF and an advanced DEMO.
 – No disruptions. No current drive. High beta.
 – Stellarator FNSF is high gain, can be a pilot-plant.

• US opportunity to lead QS-optimization strategy
 – close connection to tokamak understanding; ITER results
 – can result in similar system scale as tokamaks.

• Need US Initiative to close remaining gaps
 – Strong collaboration with large international facilities
 – Mid-scale QS experiment: integrated performance
 – Concept exploration experiments on specific topics
 – Strong theory and modeling program.