# US Strategies for an Innovative Stellarator-Based FNSF

M.C. Zarnstorff For the US Stellarator Steering Committee

FESAC Strategic Planning Panel 3 June 2014

## Context



**FNSF:** fully integrated fusion plasma and technological environment

- Long-pulse, high duty factor
- Integration testing and validation; tritium breeding

**Stellarators:** helical magnetic field torus, like tokamaks full field from 3D coils, 3D plasma shaping



**Stellarators Already Provide** 

## **Advanced Characteristics**

Steady-state: field from 3D coils, not plasma current

- ✓No disruptions.
- ✓ No current drive  $\Rightarrow$  potential high fusion gain, higher reliability
- ✓ Quiescent high-beta  $\ge$  5%,
- ✓ Energy confinement similar to tokamaks.
- ✓ Very high density limit  $\Rightarrow$  potential higher fusion reactivity

colder edge, for easier divertor

reduced fast-ion instability drive

✓ No need for feedback stabilization  $\Rightarrow$  simplify plasma control,

reduce diagnostics needed in fusion environment

Closes some technical gaps, reduces some R&D needs. Simplifies FNSF and DEMO designs. Need to demonstrate these capabilities can be simultanious

# Stellarator Research is Active World-wide

#### Large international programs:

- LHD, R=3.7m superconducting, partially optimized (Japan, 1998)
- W-7X, R=5.5m superconducting, quasi-omnigenous (Germany, 2015)

#### <u>US:</u>

- Historically, strong theory program.
  - –Methods to optimize confinement in 3D
  - -quasi-symmetry (QS): tokamak-like transport
- Pioneering novel Concept Exploration experiments, e.g.
  - -HSX, quasi-helically symmetric
  - -CTH, disruption onset thresholds
- NCSX project: partially built mid-scale experiment
  - -study sustainable high performance, quasi-axisymmetric
  - -synergy: tokamak-like transport and stellarator stability.

-cancelled in 2008, due to cost-overruns. Major components done.

## QS Stellarator FNSF has Moderate Size

|                                                                          | R<br>(m) | <a><br/>(m)</a> | В<br>(Т) | β<br>(%) | Pfus<br>(MW) | Neut.<br>Wall<br>load.<br>(MW/<br>m <sup>2</sup> ) |
|--------------------------------------------------------------------------|----------|-----------------|----------|----------|--------------|----------------------------------------------------|
| • W7-X-like                                                              |          |                 |          |          |              |                                                    |
| H.Wobig et al, NF 43 (2003) 889                                          | 18       | 2.1             | 4.5      | 3.6      | 1500         | 0.9                                                |
| • ARIES-CS-like<br>J.Menard et al, NF 51 (2011) 103014                   | 4.75     | 1.05            | 5.6      | 6        | 529          | 2                                                  |
| <ul> <li>LHD-like</li> <li>A. Sugara et al, FED 87 (2012) 594</li> </ul> | 14.4     | 2.5             | 4.7      | 5        | 3000         | 1.5                                                |

All target FNSF neutron flux. All are ignited or very close to ignition. Similar to power plant designs -> prototype reactor integration issues directly All are high gain. Would produce net power: can be pilot plants.

#### Lack of Current Drive Has Practical Benefits

- Minimizes wall penetrations & blocking of breeding blankets
- Relieves engineering constraints. Provides design margin on performance. Makes design easier.
- Simplifies sub-systems and control
- Strongly reduces recirculating power. Allows net power production at lower fusion power.

For stellarator DT experiments: Component Test Facility = High  $Q_{DT}$  = Pilot-plant

#### Stellarator R&D Gaps to FNSF

• Integrated high performance of QS-optimized stellarators

-Simultaneous high beta, high confinement, without disruptions. Benign ELMs.

-Requires experimental validation

- Simplified coil design, via new coil strategies or simpler shape
- Predictive capability for plasma behavior and operation

Operating limits

-Validation of theoretical models; including relationship to tokamak physics understanding.

- Effective divertor design, compatible with high performance
- Impurity and fusion ash accumulation control

### US Stellarator Initiative is Needed (1)

- 1. Strong international collaboration with W7X, LHD (G.Wurden)
  - -W-7X will be the first large, fully-optimized 3D experiment
  - -Long-pulse, high-power, high-beta capabilities. Divertor program.
  - -But, not quasi-symmetric hard to connect with ITER.
  - -Project to very large FNSF or DEMO.

#### 2. US mid-scale QS experiment (J. Harris)

Integrated high performance for QS; divertor; impurity accumulation; predictive understanding

-QUASAR using NCSX components (~4 years)

Theory-based design for this mission

-Managed as National & International collaboration.

#### US Stellarator Initiative is Needed (2)

- **3.** Targetted exploration experiments (O. Schmitz)
  - Divertor design development
  - -Simpler coils
  - Tests of turbulence optimization
- 4. Strengthened theory & computation program (M. Landreman)
  - Predictive understanding and modeling
  - -Configuration optimization & improvement
  - -Simpler coil design
  - Design of next-step experiments

# Stellarator Initiative Fits in ITER Timescale



- Major reviews of Initiative in
  - ~2015 (start)
  - ~2024 (progress)
  - ~2029 (readiness for next steps, decision on approaches)

# Summary

- Stellarators can be a game-changer. Provide many of the needed characteristics for a FNSF and an advanced DEMO.
  - -No disruptions. No current drive. High beta.
  - -Stellarator FNSF is high gain, can be a pilot-plant.
- US opportunity to lead QS-optimization strategy
  - close connection to tokamak understanding; ITER results
  - can result in similar system scale as tokamaks.
- Need US Initiative to close remaining gaps
  - -Strong collaboration with large international facilities
  - -Mid-scale QS experiment: integrated performance
  - -Concept exploration experiments on specific topics

-Strong theory and modeling program.