National Spherical Torus Experiment Upgrade – Status and Plans*

J. Menard, PPPL

For the NSTX-U Team

ANS 20th Topical Meeting on the Technology of Fusion Energy (TOFE-2012)
Nashville, TN USA
August 27-31, 2012

*Culham Sci Ctr
York U
Chubu U
Fukui U
Hiroshima U
Hyogo U
Kyoto U
Kyushu U
Kyushu Tokai U
NIFS
Niigata U
U Tokyo
JAEA
Inst for Nucl Res, Kiev
Ioffe Inst
TRINITI
Chonbuk Natl U
NFRI
KAIST
POSTECH
Seoul Natl U
ASIPP
CIEMAT
FOM Inst DIFFER
ENEA, Frascati
CEA, Cadarache
IPP, Jülich
IPP, Garching
ASCR, Czech Rep

*This work supported by the US DOE Contract No. DE-AC02-09CH11466
Outline

• NSTX-U Mission
• Planned NSTX Upgrade Capabilities
• Progress of Upgrade Project
• Summary
NSTX Upgrade Mission Elements

- Advance ST as candidate for Fusion Nuclear Science Facility (FNSF)
- Develop solutions for plasma-material interface
- Advance toroidal confinement physics predictive capability for ITER and beyond
- Develop ST as fusion energy system
Mission of ST-FNSF

From M. Peng, ORNL

- Provide a continuous fusion nuclear environment of copious neutrons to develop an experimental database on:
 - Nuclear-nonuclear coupling phenomena in materials in components for plasma-material interactions
 - Tritium fuel cycle
 - Power extraction

- Complement ITER, prepare for component test facility (CTF):
 - Low Q (≤ 3): \(0.3 \times \) ITER
 - Neutron flux ≤ 2 MW/m\(^2\): 3 \(x\)
 - Fluence = 1 MW-yr/m\(^2\): 5 \(x\)
 - \(t_{\text{pulse}} \leq 2 \) wks: 1000 \(x\)
 - Duty factor = 10%: 3 \(x\)

Low-aspect-ratio “spherical” tokamak (ST) is most compact embodiment of FNSF
NSTX Upgrade will address critical plasma confinement and sustainment questions by exploiting 2 new capabilities

- Higher B_T and I_p increases T, reduces ν^* toward ST-FNSF to better understand confinement
- Provides 5x longer pulses for profile equilibration, NBI ramp-up

- 2x higher CD efficiency from larger tangency radius R_{TAN}
- 100% non-inductive CD with $q(r)$ profile controllable by: tangency radius, density, position
Upgrade substantially increases B_T, I_p, P_{NBI}, τ_{pulse}

Field and current will be within factor of 2 of initial operation of ST-FNSF

Relative performance of Upgraded NSTX vs. Base:

- $I_p = 1 \rightarrow 2\text{MA}$, $B_T = 0.5 \rightarrow 1\text{T}$ (at same major radius)
- Available OH flux increased 3x, 3-5x longer flat-top
- NBI power increased 2x ($5\rightarrow 10\text{MW}$ for 5s, 15MW 1.5s)
- Plasma stored energy increased up to 4x ($0.25\rightarrow 1\text{MJ}$)
Plasma initiation with small or no transformer is unique challenge for ST-based Fusion Nuclear Science Facility

ST-FNSF has no/small central solenoid

NSTX-U goals:
- Generate ~0.3-0.4MA full non-inductive start-up with helicity injection + ECH and/or fast wave heating, then ramp to ~0.8-1MA with NBI
- Develop predictive capability for non-inductive ramp-up to high performance 100% non-inductive ST plasma → prototype FNSF
Non-inductive ramp-up from ~0.4MA to ~1MA projected to be possible with new centerstack (CS) + more tangential 2nd NBI

- New CS provides higher TF (improves stability), 3-5s needed for $J(r)$ equilibration
- More tangential injection provides 3-4x higher CD at low I_P:
 - 2x higher absorption (40\textrightarrow{}80\%) at low $I_P = 0.4$MA
 - 1.5-2x higher current drive efficiency

TSC simulation of non-inductive ramp-up from $I_P = 0.1$MA, $T_e=0.5$keV target at $B_T=1$T

\[E_{\text{NBI}} = 100 \text{keV}, I_P = 0.40 \text{MA}, f_{GW} = 0.62 \]
\[\overline{n_e} = 2.5 \times 10^{19} \text{m}^{-3}, \overline{T_e} = 0.83 \text{keV} \]
NSTX-U will investigate high flux expansion snowflake divertor + detachment for large heat-flux reduction

- Divertor heat flux width decreases with increased plasma current I_P
 - Major implications for ITER, FNSF

$\lambda_{q_{mid}} \sim I_P^{-1.0} \text{ to } -1.6$

\rightarrow NSTX Upgrade with conventional divertor projects to very high peak heat flux up to 30-45MW/m2

- Divertor heat flux inversely proportional to flux expansion over a factor of five

Snowflake \rightarrow high flux expansion 40-60, larger divertor volume and radiation

\rightarrow U/D balanced snowflake divertor projects to acceptable heat flux < 10MW/m2 in Upgrade at highest expected $I_P = 2$MA, $P_{AUX} = 10-15$MW

\rightarrow Partial detachment \rightarrow Additional $\sim 2x$ reduction in NSTX
Upgrade CS design provides additional coils for flexible and controllable divertor including snowflake, and supports CHI.

NSTX Snowflake

NSTX-U Snowflake

- Inner PF1C
- Inner PF1B
- Inner PF1A
- Inner TF Bundle
- Ohmic Heating Coil
- CS Casing
- Ceramic break assembly
- Plasma Facing Components

NSTX Snowflake

NSTX-U Snowflake

PF1C
NSTX-U centerstack and vacuum vessel analysis/design are complete, component fabrication/installation has begun

B and J each increase 2x → EM forces increase 4x

B and J each increase 2x → EM forces increase 4x

Simplified inner TF design
- single layer of TF conductors

Improved TF joint design
- joint radius increased → lower B
- flex-jumper improved

Reinforced umbrella structure and PF and TF coil supports

Coaxial and bottom OH lead minimizes error-fields

Upper TF/ OH Ends

Improved TF joint design
- joint radius increased → lower B
- flex-jumper improved
NSTX TF Fault Occurred on July 20, 2011
TF Bundle Operated for 7+ years for 20,000 shots

- TF bundle short occurred ~ 2 feet from the bottom in a relatively low mechanical stress area
- TF bundle dissection and analyses showed no sign of fatigue
- Zinc chloride based flux used for cooling water tube soldering was the cause of insulation failure.

TF Upgrade will use resin flux and improved procedures for removing the flux residues
The NSTX-U center-stack design incorporates improvements that address factors contributing to NSTX center-stack failure

- Single-layer vs. double layer design
 - Reduced voltage stress between conductors (30 volts)
 - Terminal voltage (1 kV) is across quadrant segments where there is increased insulation

- VPI vs B-Stage glass resin system
 - More homogenous insulation system without voids

- Bundle manufacturing improved to address residual solder flux
 - Less corrosive flux
 - Post-soldering bakeout
Friction stir welding of TF flags to vertical TF conductors is producing high-quality joints.
Improved soldering and flux removal process for TF cooling tubes has also been developed.

Bar placed on heat plate, cooling tube inserted into groove

Bar heated, solder paste added

Bar ground smooth

Close up views of solder joint

Solder flowing. Supplemental heat applied by torch

Good wetting of both the tube and copper bar, indicating effectiveness of flux
Features of TF inner/outer flex strap connector

Flex strap

Inner TF

Supernuts® to be used to facilitate assembly

Wire EDM instead of laminated build

Testing (60,000 cycles)
Center-stack fabrication is now underway

Conductor bar being removed from oven after post-solder bake out

Bar being wrapped with insulation

Now entering the riskiest stage of project → inner TF and OH fabrication and VPI – will VPI 1st quadrant in Sept/Oct
Fabrication techniques for the TF and OH coils

- Epoxy VPI (CTD-425: special cyanate-ester blend) required for shear strength will be used for the inner TF assembly
- Aquapur™ will be used as a temporary winding mandrel material to maintain gap between inner TF and OH of 0.1”

Recent successful VPI trials
2nd NBI requires relocation of a TFTR NBI system to NSTX, diagnostic relocations, new port for more tangential NBI

- Decontamination of 2nd Beam line successfully completed in 2010
NSTX circa 2010

Neutral Beam #1 operating since September 2000

2nd NBI to be located here
Test-cell progress since September 2011

- Permanent platforms installed. Relocation of racks started.
- Neutral Beam area now cleared
- Bay K nozzle removed. Vessel to be plasma cut with new NB port installed
- Centerstack removed and work underway inside the vessel (passive plates, NB armor)
- TF 11 and TF7 removed
- Coil support modifications - Rib welding complete. New clevis pads, PF4/5 supports, umbrella legs
- Vessel to be plasma cut with new NB port installed
New NBI port-cap has been received

- Materials, machining meet spec (but welds being re-worked)
- Preparing to plasma-cut hole in vessel for cap installation
2nd NBI to move to NSTX-U test-cell in Sept/Oct

Reentrant hook lift fixture designed to increase clearance over NSTX test-cell wall

Lift fixture installed, tested, and ready to go…
Project on-track for (early) completion: Apr-Jun 2014

President’s budget for FY2013 would delay completion by ~1 year
Summary

- NSTX-U device and research will narrow many performance and understanding gaps to next-steps
- The Upgrade Project has made good progress in overcoming key design challenges
- The Project is on schedule and budget
- NSTX-U team now formulating next 5 year plan (2014-18) to access new ST regimes including follow-on staged and prioritized upgrades