Flexibility Requirements

for a Burning Plasma Experiment

Paul H. Rutherford

Princeton Plasma Physics Laboratory

UFA Workshop on Burning Plasma Science The University of Texas at Austin December 11-13, 2000

The Dichotomy in Burning Plasma Experimental Goals

• A burning plasma experiment must explore:

- the physics of the coupling of transport and stability to a dominantly self-generated internal heat source;

- the plasma physical effects arising from an intense population of energetic alpha particles.

- A tokamak burning plasma experiment should be able to explore these issues both in the conventional H-mode regime and in the "optimized shear" advanced tokamak regime.
- To delineate fully the physics of burning plasmas, a burning plasma experiment must be able to attain:

- "good" regimes in which coupled transport/stability/heating can be studied <u>without</u> deleterious alpha-particle effects;

- "bad" regimes in which deleterious alpha effects (AE modes, etc.) are so strong that alpha heating is seriously degraded.

- For a burning plasma experiment such as FIRE to be able to attain <u>both</u> "good" and "bad" regimes, the key appears to be:
 - adequate density and density-profile control,

which should top the list of "flexibility requirements".

A Burning Plasma Experiment: Two Examples

	ITER-FEAT	<u>FIRE</u> *	
Reference Goal	Q = 10	Q = 10	
Fusion Power (MW)	400	150	
Heating Power (MW)	40	15 (30)	
Plasma Major Radius (m)	6.2	2.14	
Plasma Minor Radius (m)	2.0	0.595	
Plasma Current (MA)	15.0	7.7	
Field at Plasma Center (T)	5.3	10.0	
Elongation (K95)	1.7	1.77	
Average Triangularity (δ 95)	0.35	0.4	
Safety Factor (q ₉₅)	3.00	3.05	
Volume Average Density (10 ²⁰ m ⁻³)	1.0	4.6	
Density (Line Av.)+Greenwald Densi	ty 0.85	0.70	
Density Profile, exponent α_n	0.1	0.2	
Average Temperature, <t>n (keV)</t>	8.5	6.4	
Temperature Profile, exponent $lpha_{T}$	1.0	1.0	
Helium and Impurities	same assur	same assumptions	
Separatrix Power ÷ L-H Threshold	1.6	1.3	
Beta, total including alphas (%)	2.5	2.3	
Beta-Normal, total incl. alphas, β N	1.8	1.8	
Transport Confinement Time, TE,tr(s) 3	3. 5 1.	1.0	
H-Mode Multiplier (H _{98Hy(2)})	1.00	1.09	
In the first Operation (Electric de la company)	400	00	
Inductive Current Flat-top, τ_{pulse} (s)	400	20	
Skin Time (2nd mode), τ _{skin} (s)	160	10	
Number of τ _{skin} 's,τ _{pulse} /τ _{skin}	2.5	2.0	

* Most recent parameters for FIRE

Conclusion: Plasma physics is essentially identical

Alpha-Particle Effects: Key Dimensionless Parameters

- Three dimensionless parameters will characterize the physics of alpha-particle-driven instabilities:
 - Alfven Mach Number: v $/v_A(0)$
 - Number of Alpha Larmor Radii (inverse): /a
 - Maximum Alpha Pressure Gradient (scaled): Max R

	<u>Range of Interest</u> (e.g. ARIES-RS/AT)	<u>ITER-FEAT</u> (reference)	<u>FIRE</u> (reference)
v /v _A (0)	2.0	1.9	2.2
/ a	0.02	0.016	0.028
Max R	0.03-0.15 *	0.05	0.035

(* reflects interest in an extended range of beta and fusion power density)

- An essential requirement for a burning plasma experiment is that it be able to explore a <u>broad range</u> of values of Max R — the single most important parameter for alpha-particle effects.
- This requirement can be fulfilled in an experiment such as FIRE, provided there is <u>adequate density and profile</u> <u>control</u>.

Alpha-Particle Regimes Accessible in FIRE

- Consider densities <u>below</u> the reference density.
- Consider profiles more peaked than the reference profile.
- All cases have $P_{fusion} = 150 \text{ MW}$ and $H_{98Hy(2)} = 1.0 1.1$.

Values obtainable for the key parameter Max R (Q-values shown in parenthesis)

	_n = 0.2	_n = 0.5	_n = 1.0
	_T = 1.0	_T = 1.4	_T = 2.0
$n_{e20} = 4.6$	0.035 (10)	0.04 (15*)	0.05 (15*)
n _{e20} = 3.8	0.05 (9)	0.06 (15)	0.07 (20*)
n _{e20} = 3.2	0.08 (7.5)	0.09 (12)	0.11 (30)
n _{e20} = 2.7	0.11 (6)	0.13 (10)	0.16 (30)

- (* limited by power to exceed the L-H transition threshold)
- We see that FIRE can access the entire range of values of the parameter Max R , provided there is good density control, some profile control, and somewhat more (up to a factor 2) auxiliary power than is needed for the reference case.

Flexibility Requirements for Burning Plasma Experiment

(in descending order of importance)

Flexibility Requirement

Pumped divertor (with adjustable pumping)

Inside-launch pellet fueling

Somewhat more heating power

Large access ports

Feedback-controlled fueling and auxiliary power

Localised steerable current drive (e.g., ECCD, LHCD?)

- Heating during current ramp
- Pulse length skin time (for current redistribution)
- Outer-plasma current drive (e.g., LHCD)
- Resonant rf for helium transport

(Possibly) Feedback-controlled medium-Z impurity injection

<u>Purpose</u>

Density control. Helium exhaust studies.

Density profile control

Enhanced alpha population (factor 2) than for reference case at low density, lower-Q

Multiple heating options

Control of fusion power. Maintenance of H-mode.

Control of neoclassical tearing modes

Alpha effects in "optimized shear" AT modes

Current profile relaxation in AT modes

Alpha effects in sustained optimized-shear AT modes

Accelerated helium transport to plasma edge

Edge plasma control. Limit power to target plate.