Motivation for Building a High-Field Tokamak Burning Plasma Experiment

Glenn Bateman A.H. Kritz, T. Onjun, C. Nguyen

Lehigh University Physics Department 16 Memorial Drive East, Bethlehem, PA 18015

> Burning Plasma Science Workshop Austin, TX December 2000

A Few of the Reasons to Build a High-Field Tokamak Reactor $B \sim 12$ tesla, $R \sim 1.75$ m, cost $\sim 1 B

- 1. Test physics of alpha heating
- 2. Test gyro-radius scaling of confinement
- 3. Test the scaling of H-mode (onset and pedestal height)
- 4. Can Internal Transport Barriers be produced in reactors?
- 5. Does strong electron heating produce particle pinches?
- 6. Test effect of large sawtooth oscillations on reactor performance
- 7. Test divertors at high heat loads
- 8. What will $\langle Z_{\text{eff}} \rangle$ be in fusion reactors?
- 9. Public proof of ignition

Test Physics of Alpha Heating

- Fast alphas may degrade or enhance performance
 - Fast alphas might drive new instabilities (such as TAE modes)
 - The electron heating from fast alphas might cause particle pinches \longrightarrow more peaked density profiles
- Fast alphas may be ejected by sawtooth oscillations or they may stabilize sawtooth oscillations
 - Very broad sawtooth mixing radius in fusion reactors
- High field tokamak reactor designs have:
 - high plasma density
 - \longrightarrow short slowing down time for fast alphas
 - but high source rate
 - moderate size and high energy density
 - \longrightarrow short confinement times

Gyro-Radius Scaling

The normalized gyro-radius is defined as

$$\rho_* \equiv \rho_{\rm s}/a = (2T_{\rm e}M_{\rm i})/(eB_{\rm T}a) = 4.57 \times 10^{-3} \frac{\mathsf{q}}{B_{\rm T}[\text{tesla}] \ a[\text{m}]}{B_{\rm T}[\text{tesla}] \ a[\text{m}]}$$

In present-day tokamaks, $3.7 < \rho_*(0) \times 10^3 < 12.8$ In fusion reactor designs with $T_e(0) = 20 \text{ keV}$

Design	$a[\mathbf{m}]$	$B_{T}[\mathbf{tesla}]$	$ ho_*$ (0) $ imes$ 10 3
ITER-EDA	2.8	5.7	2.0
ITER-FEAT	2.0	5.3	3.0
Mazzucato	1.1	8.0	3.2
BPX (1991)	0.8	9.0	4.5
Ignitor	0.455	13.0	5.5
FIRE	0.525	10.0	6.2

Bateman et al.

Burning Plasma Workshop

Transport Barriers

- Need to test scaling relations for H-mode
 - Conditions needed to produce and maintain H-mode
 - Height of temperature and density pedestal which has a strong effect on core confinement
 - Control ELMs
 - Models are being developed for H-mode pedestal
- Internal Transport Barriers (ITBs) for enhanced confinement
 - It may be possible to produce Internal Transport Barriers in fusion reactors
 - It has been shown in C-mod that ICRF can drive significant plasma velocity and flow shear
 - Can use current ramp to produce reversed magnetic shear (which helps produce ITBs)

Particle Pinches

- Peaked hydrogenic density profiles enhance fusion reactor performance
 - The reason is simple: more fuel in hotest part of plasma
- Peaked helium and impurity profiles degrade performance

- Low Z impurities dilute fuel

- There is theoretical evidence that strong electron heating can produce particle pinches
- There is experimental evidence that RF heating can produce peaked density profile under some conditions

Large Sawtooth Oscillations

- In most fusion reactor designs, sawteeth are very broad $(r_{\rm mix}/a \approx 60\%$ or more) and large amplitude
 - Reason: reactor designs push parameter limits: high elongation and high current (low magnetic q)
- Sawteeth may have large effect on fast alphas, fusion heating, and confinement
 - We do not know if fast alphas will be ejected by giant sawteeth
 - Simulations show pulse of fusion heating with each sawtooth crash
- Sawteeth can be delayed or avoided $(q_{axis} > 1)$
 - Use current ramp to transiently keep $q_{axis} > 1$
 - Use current drive and bootstrap current for long pulse
 - Fast alphas may help stabilize sawteeth

Ignitor Impurity Scan

Test Divertors at High Heat Loads

- At sufficiently high density, divertors can radiate away most of the heat flux from the plasma
 - This reduces heat flux to divertor plate
 - But the high edge density may adversely affect confinement
- Test divertors in pulsed mode before going to steady state

What will $\langle Z_{\text{eff}} \rangle$ be in fusion reactors?

- High impurity content ($\langle Z_{\rm eff} \rangle$) degrades fusion reactor performance
 - No way to extrapolate $\langle Z_{\rm eff} \rangle$ to fusion reactors

Bateman et al.

Burning Plasma Workshop