Alternative Approaches to Ignition in Tokamaks

M.G. Bell
Princeton Plasma Physics Laboratory
P.O. Box 451, Princeton, N.J. 08543-0451

with contributions from
R.V. Budny, D.R. Ernst, D.M. Meade, D.R. Mikkelsen

Topics

• What have we learned about ion confinement from tokamak experiments?
 - 25 years of non-DT experiments across a wide range of machines
 - 4 machine-years of DT experiments in TFTR and JET

• Are there ways to exploit this experience in a next step?
Conventional Tokamaks Confine Energetic Ions Well

• Neutral beam and minority ICRF heating depends on this
 - PLT first demonstrated hot-ion \((T_i \sim 7\text{keV}) \) operation with NBI (1978)
 - very successful in many tokamaks

• J.F. Clarke investigated ignition with \(T_i > T_e \) [Nucl. Fusion 20 (1980) 563]
 - neoclassical ions: \(\tau_{Ei}[s] = 0.73 \, I_p[\text{MA}]^2 \, T_i[\text{keV}]^{1/2} \, n_i[10^{20}\text{m}^{-3}]^{-1} \)
 - Alcator scaling for electrons: \(\tau_{Ee}[s] = 0.76 \, a[\text{m}]^2 \, n_e[10^{20}\text{m}^{-3}] \)
 \(\Rightarrow n\tau \) for ignition reduced by factor \(\sim 2 \) with \(T_i \approx 30\text{keV}; T_e \approx 25\text{keV} \)

• Discovery of L-mode scaling in 1980’s quelled enthusiasm
 - both electrons and ions worse than originally hoped \textit{but}

• Hot-ion modes continued to produce the best fusion performance
 - L-mode, H-mode, ERS/ERS/OS; limiter/divertor

• DT experiments showed good confinement of fusion alpha-particles
Comparison of Achieved Plasma Parameters with ITER

<table>
<thead>
<tr>
<th>Central values</th>
<th>ITER(^1)</th>
<th>TFTR</th>
<th>JET(^2)</th>
<th>JT-60U(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma composition</td>
<td>DT</td>
<td>DT</td>
<td>DT</td>
<td>D</td>
</tr>
<tr>
<td>Mode</td>
<td>ELMy H-mode</td>
<td>Supershot</td>
<td>Hot-ion ELM-free H-mode</td>
<td>Reversed-shear High-(\beta_p)</td>
</tr>
<tr>
<td>(n_e [10^{20} \text{m}^{-3}])</td>
<td>1.3</td>
<td>1.02</td>
<td>0.42</td>
<td>0.85</td>
</tr>
<tr>
<td>(n_{\text{DT}} [10^{20} \text{m}^{-3}])</td>
<td>0.8</td>
<td>0.60</td>
<td>0.35</td>
<td>0.48 (n(_i))</td>
</tr>
<tr>
<td>(n_{\text{He}} [10^{20} \text{m}^{-3}])</td>
<td>0.2</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_i [\text{keV}])</td>
<td>19</td>
<td>40</td>
<td>28</td>
<td>16</td>
</tr>
<tr>
<td>(T_e [\text{keV}])</td>
<td>21</td>
<td>13</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>(Z_{\text{eff}})</td>
<td>1.8</td>
<td>1.8</td>
<td>2.1</td>
<td>3.2</td>
</tr>
<tr>
<td>(P_{\text{tot}} [\text{MPa}])</td>
<td>0.8</td>
<td>0.75</td>
<td>0.37</td>
<td>0.22</td>
</tr>
<tr>
<td>(P_{\alpha} [\text{MWm}^{-3}]) (source)</td>
<td>0.5</td>
<td>0.45</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>(P_{\text{aux}} [\text{MWm}^{-3}])</td>
<td>0</td>
<td>3.4</td>
<td>0.8</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\(^1\) ITER Final Design Review Document
\(^3\) S. Ishida et al., paper IAEA-CN-69/OV1/1, IAEA Fusion Energy Conference, Yokohama, Oct. 1998

- Confinement and pulse length are the remaining issues!
DT Plasmas are NOT the Same as Their D Progenitors

- There was a pronounced isotope scaling of confinement in TFTR

<table>
<thead>
<tr>
<th>Average ion mass: ~1.9 (D), ~2.5 (D-T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_E) (D-T) / (\tau_E) (D)</td>
</tr>
<tr>
<td>Reverse Shear</td>
</tr>
<tr>
<td>(\langle A \rangle^0)</td>
</tr>
</tbody>
</table>

- JET H-modes showed positive mass scaling of pedestal, *negative in core*
Hot Ion Plasmas in TFTR Showed a Favorable T_i Scaling

- Trends are not consistent with naïve Bohm or gyro-Bohm scaling but
- Can be modeled by invoking turbulence suppression by $E \times B$ shear
Isotope Scaling Changed Constraints on DT Operation

- TRANSP had predicted a DT:DD power ratio of ~180 at constant T_i (1990)
- Needed to operate at higher I_p, B_T to accommodate higher P_{NB}, T_i
Substantial Direct Alpha Heating of Ions for $T_e > 15$ keV

\[n_e = 1.0 \times 10^{20} \text{m}^{-3}, \quad n_{DT} = 0.9 \times 10^{20} \text{m}^{-3}, \quad Z_{\text{eff}} = 1.50, \quad Z_{\text{imp}} = 6.0 \]
Good Ion Confinement Produces Hot-Ions at Ignition

- $n_{DT} : n_H : n_{He} : n_C = 0.80 : 0.05 : 0.05 : 0.01$ (based on TFTR experience)
 - P_α and $P_{ie} \propto n^2 \Rightarrow T_i/T_e$ independent of density at ignition
Penalty is Higher β_{tot} and $\beta_{\alpha}/\beta_{\text{tot}}$

- Cannot simultaneously minimize $n\tau$ and β_{tot} at ignition
Regime Expands for High-Q with Preferential Ion Heating

- \(Q = 10; \ P_{i,\text{ext}} / P_{e,\text{ext}} = 2 \)

\[\frac{\tau_{Ei}}{\tau_{Ee}} = 5, 2, 1 \]

\[n_e \cdot \tau_E \quad (10^{20} \text{m}^{-3} \cdot \text{s}) \]

\[\frac{t}{E_i} / \frac{t}{E_e} \]

\[T_e (\text{keV}) \quad T_i (\text{keV}) \]
Convective Losses Dominate in Core of Supershots

- Ion thermal flux: \(q_i = -n_i \gamma_i k \nabla T_i + CkT_i \Gamma_i \); \(\Gamma_i \) = particle flux
 - \(C = \frac{5}{2} \) for uniform losses (= average particle energy + p.dV work)
 - \(C = \frac{3}{2} \) for supershots consistent with energy dependence of \(D_i \)

- Convective losses probably too high in standard supershots to ignite, but
 - Balance of conduction and convection in core not well determined

\[q_i = -n_i \gamma_i k \nabla T_i + CkT_i \Gamma_i \]

\(\Gamma_i \) = particle flux

\(C = \frac{5}{2} \) for uniform losses

\(C = \frac{3}{2} \) for supershots consistent with energy dependence of \(D_i \)

Convective losses probably too high in standard supershots to ignite, but

Balance of conduction and convection in core not well determined
ERS Plasmas Combine Low χ_{i} with Greatly Reduced D_e

- Flux balance effective χ: $q = - n \cdot \chi_{\text{eff}} \cdot \nabla T$ (includes convected heat flow)
- χ_{e} reduced near q_{min} but increased inside

TFTR
Construct Simple 1-D Solution for a Hot-Ion $Q = 10$ Plasma

- $<P_{\text{fus}}> \approx 0.45$ MWm$^{-3}$ (ITER: 0.75); $\tau_E = 2.7$ s (ITER: 5.8 s for ignition)
Embodiment of a Hot-Ion $Q = 10$ Plasma

- From 1-D calculation: $<p> = \frac{2}{3} (\langle P_\alpha \rangle + \langle P_{aux} \rangle) \tau_E = 0.25 \text{ MPa}$

- Choose moderately conservative assumptions
 - Inverse aspect ratio: $\varepsilon = 1/3$
 - Elongation: $b/a = \kappa = 1.6$
 - Engineering safety factor: $q_e = (\pi/\mu_0) (1 + \kappa^2) \varepsilon a B / I = 3$
 - Troyon-normalized-β: $\beta_N = 10^8 <\beta> a B / I = 80 \pi <p> a / B I = 2$

- Calculate
 - Toroidal field: $B = 5.6 \text{ T}$
 - Ratio of plasma current to minor radius: $I / a = 5.5 \text{ MAm}^{-1}$
 - For $a = 1.5\text{m}$, $R = 4.5\text{m}$, $I = 8.2\text{MA} \Rightarrow P_{\text{fus}} = 150\text{MW}, P_{\text{aux}} = 15\text{MW}$
 - $H_{\text{ITER-89P}} = 3.4$
 - Would need $\chi_i \sim 0.2 \text{ m}^2\text{s}^{-1}$ and $\chi_e \sim 0.8 \text{ m}^2\text{s}^{-1}$ for $r/a < 0.6$

- This is within the bounds of what might be achievable
Conclusions and Future Directions

• We have to use DT plasmas ("the real thing") if we are interested in fusion.

• We should re-examine approaches to ignition in regimes than the "traditional" ELMy H-mode route.

• Hot-ion regimes have produced the best performance in all large tokamaks and are not incompatible with high-Q and, possibly, ignition in DT.

• *It is quite conceivable that a hot-ion mode is a stable self-organized state of a predominantly self-heated tokamak plasma.*

• In the meantime, study hot-ion regimes in large tokamaks:
 - mechanism: sheared flow, $T_i/T_e > 1$, L_n \Leftarrow theory progress
 - is strong central fueling necessary? \Leftarrow reduced D regimes
 - MHD and TAE stability margins \Leftarrow optimize r.m.s. pressure
 - size scaling in comparable regimes \Leftarrow controlled experiments
 - put effort into controlling what matters \Leftarrow edge control
 - investigate alpha channeling \Leftarrow improves prospects