Burning Plasma Science Workshop

Astrophysics and Laboratory Plasmas

Robert Rosner
The University of Chicago
Dec. 12, 2000
Austin, TX
(http://flash.uchicago.edu)
What I will talk about …

- Illustrations of astrophysical plasmas
- Plasma conditions
- Overview of plasma physics issues for astrophysics
- Specific examples
The nearest astrophysical plasma …
The dynamical Sun …
More distant astrophysical plasmas …

The Crab nebula: soft X-ray & optical images

Cen_A: 1-3keV & 13cm images

PKS_0637-752: soft X-ray & radio
Dynamical astrophysical plasmas …

Credit: NASA/HST artist

Nova Cygni 1992

Credits: NASA/STScI
“Typical” Physical Conditions and Approaches

Conditions

- Densities ~ 10^{-5} to 10^{32} cm$^{-3}$
- Temperatures ~ 10 to 10^9 K
- Magnetic fields ~ 10^{-12} to 10^{12} G
- Plasma beta ~ 10^{-5} to 10^{20}
- Reynolds #s > 10^4

Approaches

- Most astrophysicists use single-fluid MHD theory
 - Solar/stellar magnetic field evolution
 - Jets/winds
 - Star/disk magnetospheres
- Prominent exceptions:
 - Pulsar atmospheres
 - Particle acceleration and particle emission processes
 - ...
- The next steps for plasma astrophysics theory:
 - Hall MHD
 - Gyro-kinetic/gyro-fluid models
What do astrophysicists want to know?

- Transport and diffusion processes
 - Thermal conduction: how is thermal transport modified by turbulent B?
 - Plasma attachment: how does accretion occur?
- Magnetic field evolution and structure
 - Reconnection: does “fast” reconnection exist, and if so, under what conditions?
 - Magnetic dynamos: how are astrophysical magnetic fields generated?
- Plasma heating and acceleration
 - Stellar coronae and winds
 - Resonant coupling to minor species
- Particle acceleration
 - Solar cosmic rays
 - Galactic cosmic rays
 - Ultra-relativistic cosmic rays
- Nuclear processes
 - Synthesis of the light elements during Big-bang nucleosynthesis
 - Nuclear ignition, flame propagation, deflagration-detonation transition
- Radiation hydrodynamics/instabilities
 - Filamentation
 - Plasma acceleration
Particle acceleration to Relativistic Energies

- At least 3 components
 - Galactic (and solar) cosmic rays (CR)
 - Extragalactic cosmic rays
 - Ultra-high energy cosmic rays
- $E < 10^{15}$ eV: shock acceleration
 - Shocks in supernova remnants
 - Parent particle population from stars
- $E > \text{“Knee”}$ and beyond
 - Thought to result from new mechanism
 - Smooth “join” at knee suggests common source
 - Reacceleration of galactic CR?
- UHECR detected since ~1994
 - AGASA, Fly’s Eye, Haverah Park
 - Isotropic distribution on sky
 - No Greisen-Zatsepin-Kuzmin cutoff
 - Local sources? Comets impacting neutron stars
 - Mechanism? Motional electric fields
Precision Cosmology: Big-bang Nucleosynthesis

- Light elements production bounds baryon density
 - $\rho_{\text{Deuterium}} \sim \rho_B^{-1.6}$
 - Target precision is 1%; present precision is $\sim 10\%$
- Cross sections uncertain at the 5-25% level
 - Errors up to factor of 2 for calculated ^7Li abundance
 - Cross-sections needed at relatively high energies

2: $p(n,\gamma)d$

4: $d(d,n)^3\text{He}$: ^2H yield

6: $^3\text{He}(d,p)^4\text{He}$: ^3He yield
(Nuclear) Burning Plasmas

- Some of the key unanswered questions
 - Ignition: given a turbulent plasma state (and its mean properties), can we identify the state at which a self-sustained “flame” will propagate?
 - What is the scaling of mean flame speed with the properties of the underlying (turbulent) flow?
 - Under what conditions will (nuclear) flames quench?
 - Under what conditions will a (nuclear) deflagration transition to a detonation?

- Astrophysics problems in which these questions matter
 - Type Ia supernovae (burning of an entire white dwarf star)
 - Novae (burning of H/He on surface of white dwarf star)
 - X-ray bursts (burning of H/He on surface of neutron star)
Examples of nuclear flame calculations

Credits: DOE ASCI/Alliances Flash Center

Zingale et al. (2000)

Vladimirova et al. (2000)
Where does laboratory plasma physics enter?

- Exploration of physical mechanisms
 - Particle acceleration
 - Magnetospheric accretion: neutral beam injection
 - Plasma heating processes
 - Reconnection
 - Magnetic dynamos
 - …

- Measurement of fundamental physical properties
 - Nuclear cross-sections
 - Atomic oscillator strengths
 - …

- Validation of astrophysics simulations
 - Laboratory MHD experiments can have Lundquist and Reynolds numbers comparable to those of simulations
 - Laboratory experiments are relatively well-diagnosed
... and that leads us to

QUESTIONS AND DISCUSSION