Boundary Science Requirements for Fusion Power

D. P. Stotler Princeton Plasma Physics Laboratory

Workshop on Burning Plasma Science: Exploring the Fusion Science Frontier

December 12, 2000

INTRODUCTION

• Take "compelling" \leftrightarrow issues that stand in way of making fusion power,

Core-Boundary Interaction \Leftarrow

Tritium Retention (for C)

Helium Pumping

PFC Heating by Fast α 's

Disruption Damage Effects <=

 $\textbf{Erosion / PFC Lifetime} \Leftarrow$

Dust Generation

PFC Fatigue & Neutron Damage

- Which *could* be addressed by a burning plasma experiment (bpx):
 - If it has DT ($Q \ge 5$),
 - If it has High Stored Energy (> 1 MJ/m^2 disruptions),
 - If it has Long Pulses / High Duty Factor (mm of erosion, 10's kg dust),
- Which *need* a bpx?
- Which does a bpx need? At least one ...

Control of Plasma Boundary Necessary to Access Burning Plasmas

- Necessary, not just sufficient.
- Wall conditions have huge impact on core performance,
- Examples from TFTR (Mansfield), DIII-D (Jackson, '96 PSI):

Must Control Surface Heat Fluxes To Avoid Impurities & Material Loss

- Led to development of power spreading techniques; new materials,
 - E.g., divertor detachment, RI mode; W rods, Cu alloys.
- Must do this while maintaining core boundary conditions,
 - While handling fuelling required for core density & pumping He.
- What about stability (robustness)?
 - Wall perturbations that lead to $\tau_E \uparrow \Rightarrow P_{SOL} \uparrow$,
 - \Rightarrow designs need margin.
- Can only test simultaneously on "bpx" because scalings differ (Perkins),
 - To have confidence, need to understand underlying science,
 - As an example, consider detachment.

Detached Plasma Operation Well Characterized & Modeled, But Not Completely Understood

- Nice discussion in Stangeby's book,
- To define, consider \overline{n}_e ramp:
 - 1. At detachment, current to target probes rolls over & decreases,
 - 2. While D_{α} in divertor continues increasing.
 - 3. Also see target pressure \ll midplane pressure.
- Edge plasma requirements for detachment:
 - Need ion-neutral friction & volume recombination to be significant, \Rightarrow target temperature < few eV.
 - Stangeby's 2-point model gives scaling of transition between high-recycling & detached regimes,
 - * Power & momentum balance determine particle balance.

$$n_{u,\text{crit}} = 4.2 \times 10^{15} \frac{P_{\text{SOL}}^{5/7} L^{1/14} (1 - f_{\text{power}})^{9/14}}{\chi_{\perp}^{5/14} (aR)^{5/7}},$$

• Apart from f_{power} , \Rightarrow n_u and P_{SOL} cannot be varied independently,

- Must also be consistent with core confinement.

- This provides a basic understanding, but simulations represent solution of coupled nonlinear problems. Still need to know more about:
 - 1. \perp transport, inside & outside separatrix,
 - 2. Impurity generation, transport, radiation,
 - 3. Supersonic flow & role of convection,
 - 4. Cross-field drifts,
 - 5. Trapping of Lyman- α radiation,
 - 6. "Molecular Activated Recombination."
- $\bullet \Rightarrow$ models still evolving,

Disruption Damage Effects in Burning Plasma Experiment Will Be Qualitatively Different

- Disruption energy density will cross material vaporization threshold,
 - Existing devices, < 1 MJ/m²,
 - At 1 MJ/m², have significant surface vaporization,
 - Burning plasma experiment will have 10–100 MJ/m².
 - \Rightarrow can test vapor shielding effect seen in models.
 - * Would reduce erosion,
 - * But, divertor targets would still be considered "consumable".

- Runaway current $I_{\rm ra}$ may reach $\sim I_p$ in a burning plasma,
 - Importance of "electron avalanche" increases exponentially with I_p ,
 - Gain ~ 100 for current tokamaks ($I_p = 2$ MA),
 - $\sim 10^7$ for FIRE,
 - $* \Rightarrow$ need relatively large (~ 1 A) seed to get dangerous $I_{\rm ra}$,
 - $\sim 10^{16}$ for ITER-FEAT,
 - $* \Rightarrow$ need only minute seed current.
 - Runaway losses due to MHD fluctuations may lead to lower gains,
 - But, should design surfaces to tolerate $I_{\rm ra} \sim 1$ MA.
- Deconditioning effects of disruptions likely greater,
 - \Rightarrow need efficient recovery techniques (for C surfaces).

• $\geq 10^2$ extrapolation factor in PMI parameters (Counsell, Federici)

Parameter	Existing	ITER 1998
DT Particles / Pulse	6×10^{22}	7×10^{25}
Peak Divertor Energy (W yr / m ²)	4×10^{10}	8×10^{12}
Type I ELM Energy (MJ)	0.4	50
Disruption Magnetic Energy (MJ)	15	1100
Disruption Energy Density (MJ/m ²)	~ 0.1	> 10
T Retention Fraction	> 10%	0.1% (reactor)
Pulse Length (s)	10	1000
Duty Factor	$< 10^{-3}$	0.1
Energy Content (MJ)	15	> 1000

Would Need Much Better Plasma-Materials Interaction Science To Confidently Extrapolate To Long Pulse bpx

- Fusion has considered only effect of materials on plasma (impurities),
 - But for long pulse bpx, must consider effect of plasma on materials.
- Range of complexity of materials models:

Simple single recycling coefficient (e.g., as in UEDGE) Intermediate reflection coefficient, absorbed fraction, sputtering yield, $f(\vec{v})$ for neutrals coming off surface (e.g., DEGAS 2, REDEP) Complex detailed description of material structure & composition vs. \vec{x}, t ; response to fluxes, including collective effects (????)

• Last step analogous to leap from τ_E scalings to GK simulations.

- Requires similar advances in diagnostics & more experimental effort.

• Only in process of making that leap will 'science" answers to these PMI problems be found.

- Burning plasma will need control of plasma boundary.
 - And control of surface heat fluxes to avoid impurities.
 - Only a bpx can test consistency & stability of both requirements.
 - To be confident, will need to know more about transport, ...
- Disruptions will be qualitatively worse in burning plasma,
 - Can test vapor shielding models,
 - And check predictions of runaway electron conversion.
- PMI issues in a long-pulse bpx will be very different,
 - Need much improved materials science to have confidence,
 - * Especially diagnostics & run time,
 - · Good materials diagnostics would allow control over wall sources.

