MHD STABILITY ISSUES IN A BURNING PLASMA

by

E.J. STRAIT

Presented at the
University Fusion Association Workshop on
Burning Plasma Science
Austin, Texas

December 11–13, 2000
PRESENT UNDERSTANDING OF MHD STABILITY LIMITS IS SUFFICIENT TO DESIGN A BURNING PLASMA EXPERIMENT

- Ideal MHD stability limits are well understood and predictable
 - Upper limit to plasma stability
 - Credible foundation for design of next-step devices

- Non-ideal effects introduce greater uncertainty
 - Resistivity, finite Larmor radius, energetic ions, …

- Resistive instabilities are less predictable but may be avoidable
 - Neoclassical tearing modes can be avoided transiently by profile modification
 - Recent experiments have suppressed NTMs with localized current drive

- Steady operation very near stability limits has been demonstrated

- Burning plasma experiments go beyond present experience with MHD stability, and present new scientific challenges
FULL STABILIZATION OF NTM OBTAINED WITH MODEST ECH POWER

- Resonance moved 2 cm outward
- No ECCD
- Full Stabilization

- After reaching the seed size, the stabilization is rapid because the mode growth rate is negative
- β_N increases during stabilized phase
- Even in presence of large sawteeth the mode doesn’t grow

1.1 MW ECH
STEADY STATE HIGH PERFORMANCE DISCHARGES CAN BE ACHIEVED USING UNDERSTANDING OF STABILITY LIMITS AND DISCHARGE CONTROL

- \(\beta \) controlled to remain \(~20\%\) below predicted RWM limit
 - \(\beta \) also kept \(5\%\) below experimental 2/1 NTM \(\beta \) limit
- Discharge continued in steady state until beam termination
- No sawteeth
 - \(q_0 \geq 1 \)
MSE shows $J(r)$ profile has reached resistive equilibrium with $q_0 \sim 1.05$
WHAT DISTINGUISHES A BURNING PLASMA FROM EXISTING EXPERIMENTS?

- **Self-heating**
 - Less external control over profiles (p, j, Ω)

- **Energetic particle effects**
 - Large isotropic population of fast ions

- **New ranges of dimensionless parameters**
 - \(\rho_i^* = \rho_i/a \sim T^{1/2}/aB \)
 - \(S = \tau_A/\tau_R \sim aBT^{3/2}/n^{1/2}Z_{eff} \)
 - \(\nu^* = \nu_i/\epsilon\omega_{bi} \sim nqRZ_{eff}/\epsilon^{3/2}T^2 \)

<table>
<thead>
<tr>
<th>DIII-D</th>
<th>C-MOD</th>
<th>JT-60U</th>
<th>JET</th>
<th>FIRE</th>
<th>IGNITOR</th>
<th>ARIES-RS</th>
<th>ITER-FEAT</th>
<th>ITER-FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>aB (m-T)</td>
<td>1.3</td>
<td>1.7</td>
<td>3.5</td>
<td>4.3</td>
<td>5.3</td>
<td>6.1</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
EXISTING EXPERIMENTS ARE SUFFICIENT TO INVESTIGATE MANY ISSUES OF MHD STABILITY

- Ideal MHD stability limits
 - Profile dependence
 - Shape dependence
 - Aspect ratio dependence

- Feedback stabilization of RWM

- ECCD stabilization of NTM

- Edge-driven instabilities
 - Identification of instability
 - Dependence on bootstrap current

- Stability with non-inductively driven current profiles
BURNING PLASMA-SIZE EXPERIMENTS (WITHOUT ALPHA HEATING) ARE REQUIRED TO INVESTIGATE SCALING OF MHD STABILITY PHYSICS

- **NTM beta limit scaling**
 - Threshold island size decreases with decreasing ρ_i^*
 - Seed island size decreases with increasing S

- **Edge-driven instabilities**
 - Edge gradients determine stability limit
 - Pedestal width determines coupling to core
 - Scaling of edge parameters is not well understood

- **Resistive wall mode stability**
 - Rotation frequency required for stabilization may increase with S ($\Omega \tau_A \sim 0.05$)

- **Runaway avalanche during disruption**
 - Number of e-foldings increases with plasma current
 - Runaway electron current multiplication
 - $\geq 10^2$ at $I_p = 2$ MA
 - $\geq 10^6$ at $I_p = 5$ MA
NTM THRESHOLD SCALES LINEARLY WITH NORMALIZED ION LARMOR RADIUS

- But scaling of β_N/ρ_{i*} with collisionality is not consistent between machines
 - Possible additional dependence on ρ_{i*} or S
- $\beta_N \propto \rho_{i*} f(\nu)$ is consistent with polarization/inertial model of Wilson et al.

Best fit $f(\nu)$ is different for each device

Sawtooth-induced 3/2 NTM, ELMing H–mode
SAWTOOTH INDUCED SEED ISLANDS SCALE INVERSELY WITH MAGNETIC REYNOLD'S NUMBER

- Seed islands estimated from m/n = 3/2 Mirnov level upon excitation

\[
\frac{\tilde{w}_s}{r} \approx \left(\frac{16rR}{3sB_T} \right)^{1/2} |\tilde{B}_r| \quad \text{with} \quad |\tilde{B}_r| \approx \frac{1}{2} \left(\frac{b}{r} \right)^4 |\tilde{B}_\theta|_{\text{wall}}
\]

- Best fit has \(\frac{w_{\text{seed}}}{r} \propto S^{-0.46 \pm 0.05} \), correl \(r = -0.74 \) consistent with dynamical coupling model of Hegna et al.
EDGES STABILITY AND ELM CHARACTER DEPEND CRITICALLY ON COLLISIONALITY

- With increasing edge density or $\nu^* \propto n/T^2$.
 - Calculated j_{BOOT} decreases \Rightarrow edge magnetic shear increases, $\nu = S_0 - 2 \left(\frac{\langle j_{\text{EDGE}} \rangle}{j_{\text{TOR}}^2} \right)$, \Rightarrow SS access lost
 - ELM modes increase in n.
 - Pressure gradient is reduced from calculated limit for n=5 edge localized ideal kink/ballooning (GATO) to ideal nigh n ballooning mode limit (BALOO).
ELM SIZE CORRELATES WITH RADIAL WIDTH OF PREDICTED UNSTABLE INTERMEDIATE n KINK MODE

- Highly localized instability computed from GATO
 ⇒ Type I ELM has little effect
 \(\delta T_e \sim 300 \text{ eV} \)
- Predicted instability computed from GATO code penetrates into core
 ⇒ High performance is lost
 \(\delta T_e \sim 400 \text{ eV} \)

Discharge #92001
- H Mode
- \(n = 5 \)
- \(m = 6 \)
- \(m = 7 \)

Discharge #87099
- NCS H Mode
- \(n = 5 \)
- \(m = 11 \)
- \(m = 12 \)
- \(m = 13 \)
- \(m = 14 \)
- \(m = 15 \)
A BURNING PLASMA (STRONG ALPHA HEATING) IS NEEDED TO INVESTIGATE KEY ISSUES OF MHD STABILITY

- Energetic particle interactions with MHD modes (sawteeth, fishbones, TAE, ballooning modes, etc.)
 - Stabilization or destabilization of MHD modes by alphas
 - Enhanced transport of alphas by MHD modes

- Self-heating ($P_\alpha \gg P_{\text{external}} \Rightarrow Q \geq 10$)
 - Stability limits with pressure profiles determined by alpha heating
 - Plasma rotation with little or no external momentum input (RWM stability, mode locking, error field sensitivity)

$$\Omega \sim \omega^* \sim T/a^2B$$

- Steady-state operation ($\tau > \tau_{\text{CR}} \sim a^2T^{3/2}/Z_{\text{eff}}$)
 - Stability limits with self-consistent current density and pressure profiles
STABILITY LIMIT DEPENDS STRONGLY ON THE FORM OF THE PRESSURE PROFILE

- DIII-D high $p_0/\langle p \rangle \sim 6.0$ (L–mode): $\beta_N \leq 2.5$
 - Limited by fast $n = 1$ disruption

- TFTR high $p_0/\langle p \rangle \sim 6.0$ (ERS–mode): $\beta_N \leq 2$
 - Limited by fast $n = 1$ disruption

- DIII-D low $p_0/\langle p \rangle \sim 2.5$ (H–mode): $\beta_N \leq 4$
 - No disruption limited by ELM-like activity from finite edge pressure gradients

![Graph showing stability limits for different modes with pressure profiles and beta values.](image-url)
ROTATION DECELERATES ABOVE THE NO-WALL β LIMIT
(EVEN WITH LARGE TORQUE)

Two competing models are being investigated

- Gimblett and Hastie torque balance model with marginally unstable RWM predicts qualitative behavior
- New data is consistent with resonant amplification of static error fields by marginally stable RWM
CONCLUSIONS

- Some issues of MHD stability require burning-plasma parameters to investigate
 - NTM beta limit scaling
 - Edge-driven instabilities
 - Resistive wall stabilization
 - Disruption scaling (runaway avalanche)

- Some key issues of MHD stability can only be addressed with strong alpha heating
 - Energetic alpha interactions with MHD modes
 - Stability with profiles determined by self-heating ($t >> \tau_E$)
 - Stability with self-heating and relaxed current density profile ($t >> \tau_{CR}$)

- Many of the issues requiring a burning plasma are not purely MHD stability issues but issues of integration (transport, profile control, burn control, etc.)
INTEGRATION OF SEPARATE ELEMENTS MAY BE THE MOST IMPORTANT MISSION FOR A BURNING PLASMA EXPERIMENT

- Strong coupling of transport, heating, and stability leads to a more “self-organized” plasma than in a short-pulse, externally heated tokamak.

 - Pressure profile → Fusion rate → Alpha heat deposition → Thermal transport → Pressure profile
 - Pressure profile → Bootstrap current profile → Thermal transport → Pressure profile

- MHD instabilities can intervene in these loops:

 - Pressure, current density, and fast ion profiles → Instabilities → Modification of profiles

- Investigation of such a complex, non-linear system represents a scientific challenge, and may yield some surprises.

RECOMMENDATION: A “next step” burning plasma experiment is needed as the only way to address this challenge.