DIII-D's Role in Advancing U.S. Interests in Fusion Energy Development

DIII-D Is a Critical Element in Advancing and Informing U.S. Program Elements on the Path to Fusion Energy

M.R. Wade/FESAC Priorities/July 2012

DIII-D is Uniquely Positioned to Resolve Key Physics Challenges and Ensure ITER's Success

- Qualify techniques for ELM control in ITER
- Develop reliable means to avoid and mitigate damaging effects of ITER disruptions
- Determine limitations imposed by new superconducting coil constraints
- Develop reliable plasma control techniques consistent with ITER capabilities
- Develop and quantify performance of plasma regime expected in ITER (dominant electron heating, low NBI torque)
- Provide physics basis for improved confidence in ITER heat flux control plans

Facility capabilities and responsive team enable rapid answers to ITER urgent requests

DIII-D: U.S.'s ITER Simulator ~1/4 size ITER Prototype

DIII-D Capabilities Indicate Opportunity for Extending the Technical Reach of ITER

- ITER baseline scenario provides minimal level of performance for U.S. science needs
 - DIII-D has demonstrated performance well beyond this level
- Potential exists on ITER for:
 - Q = 10 at lower plasma current (less risk to ITER)
 - Q > 10 inductive (ignition possible)
 - Q > 5 steady-state (FNSF/DEMO proof-ofprinciple)
- Such capabilities on ITER would expedite development of fusion energy
 - Improved understanding of key processes in burning plasmas (e.g., transport, energetic particles, 3D fields)
 - Define path to performance optimization in DEMO
 - Control tool development and strategy testing

DIII-D Will Enable U.S. to Take Leadership Positions in ITER Science

ITER is potentially impacted by new physics

- Small gyroradius (ρ^*) effects
- Transport in burning plasma regime
- Fast ion instabilities in "sea" of modes
- DIII-D provides excellent scientific platform for developing physics models of these effects
 - Flexible control tools and geometry
 - Comprehensive diagnostic set
 - Access to ITER regimes
- DIII-D is an outstanding facility for training the next generation of fusion scientists and can help build the U.S. team for exploitation of ITER

Scale of turbulent eddies predicted to change in burning plasma regime

Comprehensive diagnostics

DIII-D Capabilities Enable US to Maintain Leadership on Path to Fusion Energy Beyond ITER

- Steady-state operation raises new challenges:
 - Broad profiles to enable high beta access and full non-inductive operation
 - Detached boundary to eliminate erosion
- DIII-D's flexible heating and current drive offer basis to inform decisions on next step devices
 - Off-axis current drive provides access to regimes of interest for FNSF and DEMO
 - Sufficient power to probe stability limits
 - Dominant electron heating to assess impact of transport
- Shape flexibility allows exploration of using boundary geometry to optimize divertor detachment

Additional Funding is Required to Properly Exploit DIII-D Capabilities in Pushing Fusion Energy Forward

Critical Mass

- Available budget is near critical level to support safe, reliable operations
- FES guidance of 10 weeks operations in FY13 will limit program's ability to advance fusion energy development
 - Requires hard choices on research priorities
- Long-term impact will be loss of U.S. leadership in key areas
 - E.g., scenarios, transport, energetic particles, 3D fields

"Existing technical staff appears marginally adequate to support the combination of operations, maintenance of aging equipment." - DoE DIII-D Facility Review Panel, May 2008

With the guidance budget, DIII-D is the only operating U.S facility in FY13-14

Further Upgrades to DIII-D Will Advance U.S. Leadership in Key Areas for Fusion Energy Development

DIII-D Is a Critical Element in U.S. Preparations for ITER and in Defining Next Facility on Path to Fusion Energy

