Burning Plasma Science: The Challenge and Opportunity

Gerald A. Navratil

2004 AAAS Annual Meeting Symposium on Burning Plasma Physics Seattle, WA 12-16 February 2004

OUTLINE

- BASIC REQUIREMENTS FOR A BURNING PLASMA
- FRONTIER SCIENCE ISSUES: WHAT DO WE WANT TO KNOW?
- Q~1 RESULTS: AT THE THRESHOLD
- Q~5: α -effects on TAE stability
- Q~10: Strong Non-Linear Coupling
- Q≥20: BURN CONTROL & IGNITION
- TAKING THE "NEXT STEP": ITER

274-01/rs

FUSION "SELF-HEATING" POWER BALANCE

FUSION POWER DENSITY: $p_f = R\varepsilon_f = \frac{1}{4}n^2 \langle \sigma v \rangle \varepsilon_f$ for $n_D = n_T = \frac{1}{2}n$

TOTAL THERMAL ENERGY
$$W = \int \left\{ \frac{3}{2} nT_i + \frac{3}{2} nT_e \right\} d^3x = 3nTV$$

IN FUSION FUEL,

DEFINE "ENERGY CONFINEMENT TIME", $\tau_{E} \equiv \frac{W}{P_{loss}}$

274-01/rs

PARAMETERIZATION OF Q VERSUS nT τ_{E} **OR P** τ_{E}

Recast power balance:
$$P_{\alpha} + P_{heat} = \frac{W_{\tau}}{\tau_{l}}$$

 $nT\tau_{E} = p\tau_{E} = \frac{12T^{2}}{\langle \sigma v \rangle \varepsilon_{\alpha} (1 + \frac{5}{Q})}$

Useful since in 10–20 keV range where $p\tau_E$ is minimum for given Q <5V> \propto T^2

and p is limited by MHD stability in magnetically confined plasmas

Ignition Q =
$$\infty \Rightarrow p\tau_{E} > \frac{12T^{2}}{\langle \sigma v \rangle \epsilon_{\alpha}}$$

HOW CLOSE ARE WE TO BURNING PLASMA REGIME?

Tokamak experiments have approached Q ~ 1 regime.

BURNING PLASMA IS A NEW REGIME: FUNDAMENTALLY DIFFERENT PHYSICS

New Elements in a Burning Plasmas:

SELF-HEATED SIGNIFICANT ISOTROPIC ENERGETIC BY FUSION ALPHAS POPULATION OF 3.5 MEV ALPHAS

LARGER DEVICE SCALE SIZE

PLASMA IS NOW AN **EXOTHERMIC** MEDIUM & HIGHLY NON-LINEAR

COMBUSTION SCIENCE \neq LOCALLY HEATED GAS DYNAMICS

FISSION REACTOR FUEL PHYSICS \neq RESISTIVELY HEATED FUEL BUNDLES

⇒OPPORTUNITY FOR UNEXPECTED DISCOVERY IS VERY HIGH⊂

Important Physical Properties of $\alpha\text{-}\text{Heating}$

- FOR Q ~ 10: $nT\tau_E \sim 2 \times 10^{21} \text{ m}^{-3} \text{ keV s}$ for T ~ 10 keV
 - + WHEN NON-IDEAL EFFECTS (PROFILES, HE ACCUMULATION, IMPURITIES) SOMEWHAT LARGER VALUE ~ $3 \times 10^{21} \text{ m}^{-3} \text{ keV s}$
- FOR TOKAMAK "TYPICAL" PARAMETERS AT Q ~ 10 n ~ 2 x 10^{20} m⁻³ T ~ 10 keV τ_E ~ 1.5 s
- BASIC PARAMETERS OF DT PLASMA AND α $V_{Ti} \sim 6 \times 10^5$ m/s $V_{\alpha} \sim 1.3 \times 10^7$ m/s $V_{Te} \sim 6 \times 10^7$ m/s Note at B ~ 5 T: $V_{Alfvén} \sim 5 \times 10^6$ m/s $< V_{\alpha}$
- CAN IMMEDIATELY DEDUCE:
 - 1) α -particles may have strong resonant interaction with Alfven waves.

2) $T_i \sim T_e \text{ since } V_{\alpha} >> V_{Ti} \text{ and } m_{\alpha} >> m_e \text{ the } \alpha \text{-particles slow}$ PREDOMINANTLY ON ELECTRONS.

Q ≤ 1 Results from TFTR and JET

At the Burning Plasma Threshold

DT EXPERIMENTS ON TFTR AND JET

	TFTR	JET
Peak Transient Q	0.27	0.61
α Confinement	Classical	Classical
lpha Slowing Down	Classical	Classical
lpha Heating Observed	Yes, but weak	Yes

JET DT EXPERIMENTS SHOW α-HEATING OF CENTRAL ELECTRONS

• D/T ratio varied & maximum $\Delta T_e \sim 3$ keV at 60% T

DT EXPERIMENTS ON TFTR AND JET

	TFTR	JET	
Peak Transient Q	0.27	0.61	
α Confinement	Classical	Classical	
lpha Slowing Down	Classical	Classical	
α Heating Observed	Yes, but weak	Yes	
α Driven Alfven Wav in Highest ${\rm P}_{\alpha}$ Plasma	es as No	Νο	
т _і	36 keV	28 keV	
Т _е	13 keV	14 keV	
n	1×10 ²⁰ m ⁻³	0.4×10 ²⁰ m ⁻³	
nTτ	4.3×10 ²⁰ m ^{−3} keVs	8.3×10 ²⁰ m ^{−3} keVs	
f_{α}	5% [~2MW]	12% [~3 MW]	274-01/rs

Q ~ 5: α-effects on TAE stability

ALPHA PARTICLE EFFECTS: KEY DIMENSIONSLESS PARAMETRS

•Three dimensionless parameters will characterize the physics of alpha-particle-driven instabilities:

- Alfven Mach Number: $V_{CC}/V_A(0)$
- Number of Alpha Lamor Radii (inverse): ρ_{α}/a
- Maximum Alpha Pressure Gradient (scaled): Max R $abla eta_{lpha}$

	Fusion Power Plant	ITER	JET
V _{\Cl} /V _A (0)	≈ 2.0	1.9	1.6—1.9
ρ _α /a	≈ 0.02	0.016	~0.1
Max $\mathbf{R}\nabla \beta_{\mathbf{C}}$	α 0.03–0.15	0.05	0.02-0.037

New Alpha Effects Expected on Scale of Burning Plasma

- Present experiments show alpha transport due to only a few global modes.
- Smaller value of ρ_α/<a> in a Burning Plasma should lead to a "sea" of resonantly overlapping unstable modes & possible large alpha transport.
- Reliable simulations not possible with our 'standard model'...needs experimental information in new regime.

Q ~ 10: Strong Non-Linear Coupling & Steady-State High β Operation

BURNING PLASMA SYSTEM IS HIGHLY NON-LINEAR...

BASIC COUPLING OF FUSION ALPHA HEATING:

BURNING PLASMA SYSTEM IS HIGHLY NON-LINEAR...

ADD ALPHA DRIVEN TAE MODES:

BURNING PLASMA SYSTEM IS HIGHLY NON-LINEAR...

ADD COMPLEX PHYSICS OF ALPHA DRIVEN TAE MODES:

MAJOR DISCOVERY OF THE 1990's: SHEARED FLOW CAUSES TRANSPORT SUPPRESSION

Gyrokinetic Theory

 Simulations show turbulent eddies disrupted by strongly sheared plasma flow

With

Flow

Without Flow

y

Experiment

• Turbulent fluctuations are suppressed when shearing rate exceeds growth rate of most unstable mode

Verified Prediction of Biglari, Diamond, Terry, Phys. Fluids B 2 1 (1990)

Thermonuclear Heating

Slow, red magnetic flux diffusion loop

Q > 20:

Burn Control & Ignition Transient Phenomena

TRANSIENT BURN PHENOMENA WHEN Q ≥ 20

Time dependent energy balance: $\frac{d}{dt}[3 \text{ nT}] = \frac{1}{4} n^2 \varepsilon_{\alpha} V < \sigma v > + P_{heat} - \frac{3 nT}{\tau_F (n,T)}$

- At fixed n and high Q system can be thermally unstable

Solve for P_{heat} in steady-state:

$$P_{heat} = \frac{3 nT}{\tau_{E} (n,T)} - \frac{1}{4} n^{2} \varepsilon_{\alpha} V \langle \sigma v \rangle$$

TRANSIENT BURN PHENOMENA WHEN Q ≥ 20

Time dependent energy balance: $\frac{d}{dt}[3 \text{ nT}] = \frac{1}{4} n^2 \varepsilon_{\alpha} V < \sigma v > + P_{heat} - \frac{3 \text{ nT}}{\tau_{F}(n,T)}$

- At fixed n and high Q system can be thermally unstable

Solve for P_{heat} in steady-state:

Pheat =
$$\frac{3 \text{ nT}}{\tau_{\text{E}}(\text{n,T})} - \frac{1}{4} n^2 \varepsilon_{\alpha} V < \sigma v >$$

TRANSIENT BURN PHENOMENA WHEN Q ≥ 20

Time dependent energy balance: $\frac{d}{dt}[3 \text{ nT}] = \frac{1}{4} n^2 \varepsilon_{\alpha} V \langle \sigma v \rangle + P_{\text{heat}} - \frac{3 \text{ nT}}{\tau_{F}(n,T)}$

- At fixed n and high Q system can be thermally unstable

Taking the Next Step in Burning Plasmas: ITER

Major Advances & Discoveries of 90's Lay Foundation for Next Step Burning Plasma Experiments

Burning Plasma Physics - The Next Frontier

FIRE

US Based International Modular Strategy ITER ELL or CA B

JA, EU or CA Based International Partnership

Italian Based International Collaboration

"I am pleased to announce today, that President Bush has decided that the United States will join the international negotiations on ITER."

Secretary of Energy Spencer Abraham 30 January 2003

...we know that this experiment is a crucial element in the path forward to satisfying global energy demand.

President Bush has faith in American science. And he knows the huge energy challenges for the United States and for the world that fusion science seeks to tackle.

And let me tell you, he is not one for taking baby steps when leaps are called for.

By the time our young children reach middle age, fusion may begin to deliver energy independence and energy abundance to all nations rich and poor. Fusion is a promise for the future we must not ignore.

But let me be clear, our decision to join ITER in no way means a lesser role for the fusion programs we undertake here at home. It is imperative that we maintain and enhance our strong domestic research program ... at the universities and at our other labs.

The ITER Design: Poloidal Elevation

	ITER
Major radius	6.2 m
Minor radius	2.0 m
Plasma current	15 MA
Toroidal magnetic field	5.3T
Elongation / triangularity	1.85 / 0.49
Fusion power amplification	≥ 10
Fusion power	~400 MW
Plasma burn duration	~400 s

ITER parameters in Q = 10 reference inductive scenario

ITER Design Goals

Physics:

- ITER is designed to produce a plasma dominated by $\alpha\mbox{-particle}$ heating
- produce a significant fusion power amplification factor (Q ≥ 10) in longpulse operation
- aim to achieve steady-state operation of a tokamak (Q = 5)
- retain the possibility of exploring 'controlled ignition' ($Q \ge 30$)

Technology:

- demonstrate integrated operation of technologies for a fusion power plant
- test components required for a fusion power plant
- test concepts for a tritium breeding module

ITER PLANS & STATUS

AIMS AT CONSTRUCTION START IN 2006 – FIRST PLASMA 2015: SIX PARTNERS NEGOTIATING TO CONSTRUCT

CHINA	JAPAN
EU	Russia
KOREA	USA

INTERNATIONAL NEGOTIATIONS MUST CHOOSE SITE

JAPAN	OFFERED SITE IN ROKKASHO
EU	OFFERED SITE IN CADARACHE

 \Rightarrow CONSENSUS DECISION REQUIRED: SPRING 2004? \Leftarrow

CONCLUDING COMMENTS & DISCUSSION

• BURNING PLASMA STUDIES OPEN A NEW REGIME OF PLASMA PHYSICS OF AN EXOTHERMIC MEDIUM:

IS THE GRAND CHALLENGE PROBLEM IN OUR FIELD.

- DRAMATIC PROGRESS IN 1990'S HAS ESTABLISHED A SOUND BASIS FOR EXPLORATION OF THE BURNING PLASMA REGIME.
- US WORKING WITH INTERNATIONAL COMMUNITY TO BUILD FIRST MAGNETICALLY CONFINED BURNING PLASMA: ITER
- HIGH LEVEL OF EXCITEMENT IN THE PLASMA PHYSICS COMMUNITY AS WE (HOPEFULLY) SOON START CONSTRUCTION OF LONG ANTICIPATED BURNING PLASMA EXPERIMENT.