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Direct-drive holds great promise for ignition 
on the National Ignition Facility (NIF)

TC6890

• Two paths to direct-drive ignition on the NIF have been identifi ed—
symmetric and polar.

• Good agreement between predictive simulations and ignition-
scaled cryogenic implosions is obtained on the OMEGA laser 
for symmetric drive.

• Polar direct drive may allow for ignition on the NIF in its x-ray drive 
confi guration.

• A new high-energy petawatt capability at OMEGA (OMEGA-EP) will 
provide the ability to image core distortions in cryogenic implosions 
and test fast-ignition concepts.

Summary



Outline

TC6891

• Brief introduction to direct-drive

• Symmetric drive

• Polar direct drive

• Fast ignition



Ablation is used to generate the extreme pressures required
to compress a fusion capsule to ignition conditions

S5g

“Hot-spot” ignition requires the core temperature to be at least
10 keV and the core fuel areal density to exceed ~300 mg/cm2.
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The NIF direct-drive point design is a thick
DT-ice layer enclosed by a thin CH shell
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A number of key physics issues associated with capsule
implosions are being investigated at LLE

E6426i

Direct-drive target X-ray-drive target

Capsule

Laser beams Hohlraum using
a cylindrical high-Z case

Laser
beams

• Energy coupling
• Drive uniformity
• Hydrodynamic instabilities

Key issues:



The Rayleigh–Taylor instability

can reduce target performance

TC2800b

Classical
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There are four sources of perturbations a direct-drive
capsule must tolerate to ignite and burn

Control of target and irradiation nonuniformity and subsequent instability
growth provides the greatest challenge to direct-drive ignition.
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Example of laser nonuniformity: application of single-beam
smoothing* is necessary for ignition

2-D simulation of Direct Drive Capsule at the end of Acceleration
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The NIF direct-drive point design ignites with a gain of 30** when
nonuniformities are included in the simulations.

*S. Skupsky et al., J. Appl. Phys. 66, 3456 (1989).
**P. McKenty et al., Phys. Plasmas 8, 2315 (2001).
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The OMEGA laser is designed to achieve high uniformity
with flexible pulse-shaping capability

• 60 beams

• >30 kJ UV on target

• 1% – 2% irradiation nonuniformity with
1 THz 2-D SSD, polarization smoothing
phase plates, power balance

• Flexible pulse shaping

• Short shot cycle (1 h)

• A wide range of implosion diagnostics

80 m



OMEGA cryogenic targets are energy scaled from
the NIF symmetric direct-drive point design
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Energy ~ radius3;

power ~ radius2;

time ~ radius
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The life cycle of a cryogenic target is an engineering
tour de force
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• Target positioning accuracy is more challenging with cryogenic targets.



A 2-D hydrodynamic simulation demonstrates
good agreement in predicting target
performance for shot 35713 (α ~ 4)
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Hydrodynamic simulations are consistent with implosion
data over a wide range of ice roughness and target offset
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Performance with NIF requirements



Conversion to direct drive requires the addition of optics 
to the midplane of the NIF target chamber
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Indirect Drive Direct Drive
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Polar direct drive (PDD) enables ignition experiments
while the NIF is in its x-ray drive configuration

• Refractive losses due to higher angles of incidence at the equator
can be compensated for by varying pulse shapes.

• Preliminary 2-D simulations of PDD achieve ignition with gain 30.
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OMEGA EP will be used to backlight cryogenic
implosions and study fast ignition

OMEGA EP: ICF Program
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Core distortions in OMEGA cryogenic implosions can be
diagnosed using backlighting techniques and OMEGA EP

*F. J. Marshall et al., Rev. Sci. Inst. 68, 735 (1997).
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A complementary approach to hot-spot ignition, namely
fast ignition is an active area of research at LLE

OMEGA EP: Fast Ignition

Fast Ignitor*Conventional ICF

Fast
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of heat

Fast-heated side spot ignites
a high-density fuel ball

ρhot ≈ ρcold (isochoric)

Low-density central spot ignites
a high-density cold shell
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Key physics issues

• hot electron production
• transport to the core
• core formation

* M. Tabak et al., Phys. Plasmas 1, 1626 (1994).
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Fast ignition with cryogenic fuel will be conducted
on OMEGA with the high energy petawatt OMEGA EP

E11710g

Hole
boring Ignition

10 psLight pressure
bores hole in

coronal plasma.
~1-MeV electrons
heat DT fuel to
~10 keV, ~300 mg/cm2.

Channeling Concept* Cone-Focused Concept**

Au cone

Single
ignitor

beam: 10 ps

e–

* M. Tabak et al., Phys. Plasmas 1, 1626 (1994).
** R. Kodama, Nature 418, 933 (2002).

Key physics issues

• hot electron production
• transport to the core
• core formation



Direct-drive holds great promise for ignition 
on the National Ignition Facility (NIF)

TC6890

• Two paths to direct-drive ignition on the NIF have been identifi ed—
symmetric and polar.

• Good agreement between predictive simulations and ignition-
scaled cryogenic implosions is obtained on the OMEGA laser 
for symmetric drive.

• Polar direct drive may allow for ignition on the NIF in its x-ray drive 
confi guration.

• A new high-energy petawatt capability at OMEGA (OMEGA-EP) will 
provide the ability to image core distortions in cryogenic implosions 
and test fast-ignition concepts.

Summary/Conclusions
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