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Outline

• The challenge of Inertial Confinement Fusion

• Development of the science basis for ignition on the Nova
and Omega laser

• Final steps on the path to ignition - the National Ignition
Campaign (NIC)

• Opportunities for the future on NIF 



Fusion can be accomplished in three
different ways
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The extreme conditions required for inertial
fusion ignition are found only in stellar interiors
and nuclear weapon tests
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Rocket-like implosion
achieves velocities of
nearly 1 million MPH

Spherical collapse
produces high
temperatures and
densities

Indirect Drive

Hot spot
(10 keV
~100 million Kº)

Cold, dense
main fuel
(200-1000 g/cm3)

Low-z
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Cryogenic
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compression

There are two principal approaches to 
compression in Inertial Confinement Fusion

Direct Drive

DT
gas

2.5 
mm 0.1

mm

10
mm



The scale of ICF ignition experiments is
determined by the limits to compression
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• Constraints on x-ray drive and
hydrodynamic instabilities limit
implosion velocities to

! 

V
imp

<400 kilometers/sec

            ( ~900,000 MPH)
and this limits the

maximum compression
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or ~10 times the density of
the center of the Sun



X-rays enhance implosion symmetry and reduce
hydrodynamic instability at a cost in efficiency



Fast Ignition is an approach to ICF which
decouples compression from ignition

• Central hot spot ignition relies on precise control of implosion symmetry
and hydrodynamic instability

• Fast ignition will require significant advances in the understanding of
charged particle production and transport at ultra-high intensity
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• Over 3 decades of experiments on Nova, Omega and other facilities
have provided an extensive data base to develop confidence in the
numerical codes

• Benchmarked numerical simulations with radiation-hydrodynamics
codes provide a first principles description of x-ray target performance
(Laser-plasma interactions are treated separately with codes which are
now becoming predictive for NIF-relevant plasmas)

• “The Halite/Centurion experiments using nuclear explosives have
demonstrated excellent performance, putting to rest fundamental
questions about the basic feasibility to achieve high gain” - from  1990
NRC review of ICF
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Why do we believe that ignition will
work on NIF?



Advances in laser performance, precision diagnostics,
and advanced modeling tools combined to establish the
requirements for Ignition.

From 1984 to 1999, the 10 beam, 30 kJ, 0.35 µm Nova
laser was the central facility for indirect drive ICF

Nova Target Chamber Implosion Experiment



The Nova ignition physics program utilized
targets which were scaled to test key issues
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~0.5 mm diameter

X-ray image of laser
spots inside hohlraum
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Advanced diagnostics have been central to
measuring the phenomena critical to
understanding NIF
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Compression of an ICF capsule requires
exceptionally uniform drive pressure

ICF capsules shrink in
volume by greater
than 40,000x

Hohlraum axis: NIF hohlraums irradiate ignition
capsules with symmetry similar to that of a basketball



On Nova and Omega, we demonstrated control
of symmetry by varying the hohlraum length



The Rayleigh-Taylor instability occurs when a
heavy fluid “sits on top of” a light fluid

Observations from supernova SN1987A
suggest strong mixing of the radiative
core into the outer envelope

…and in astrophysical situations
such as an expanding supernova

A similar situation occurs
in ICF implosions

Water (blue) on mineral oil (red)
(images at 1 second intervals)

14 cm



ICF Implosions are hydrodynamically unstable

Inner surface
seeds grow on 
deceleration

Feed through and
initial roughness
seeds inner surface
Perturbations

20-00-1093-3875

The largest growth of
perturbations occurs
mainly on the outer
surface during
acceleration

Can be tested in
planar experiments



Accelerating
Foil

08-00-0593-1818B

The measured growth of ablative hydrodynamic
instabilities in ICF agrees with numerical models
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We have validated our ability to model hohlraum
temperatures in a broad range of experiments

X-ray flux versus time (from the
hohlraum laser entrance hole)
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• Stimulated Raman Scattering (SRS)

• Stimulated Brillouin Scattering (SBS)

Ion sound
wave

Scattered
light wave

Laser light

Scattered
light wave

Laser light Electron
plasma wave

Parametric Laser plasma instabilities (LPI)
limit the achievable hohlraum temperatures

50-00-1088-2808C

Scattered light reduces hohlraum
absorption (efficiency issue) and
changes its location (symmetry issues)

A child’s swing is a simple
parametric amplifier



Initial
operations
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Ignition point design optimization must
balance LPI effects, laser performance
impacts, and capsule robustness

Design
Optimum for
initial ignition
experiments
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Hohlraum Wall:
  – U or U0.75Au0.25

Laser Beams
(24 quads through each
LEH arranged to
illuminate two rings on
the hohlraum wall)

Laser Entrance Hole
(LEH) with window

Hohlraum Fill
 – He0,8H0.2 at 0.9 mg/cm3

10.8
mm

Capsule fill tube

Graded-doped Be
Capsule (CH and
Diamond are alternates)

Solid DT
fuel layer

The NIF point design has a graded-doped,
beryllium capsule in a hohlraum driven at 285 eV

Cryo-cooling
Ring

Aluminum assembly sleeve
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Precision targets being developed for the NIF
meet the ignition target requirements



Extensive 2D and 3D calculations are a
central part of our strategy

Fuel region at ignition
time
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Results of 3D Hydra Code
calculation



Drive temperature Trad
demonstration (Scale 0.7)96 beams

Symmetry, shock timing, and ablation rate
technique demonstration at NIF scale96 beams

Optimize drive, symmetry,
timing and ablation
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The National Ignition Campaign is focused on
preparing for the first ignition experiments in 2010
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Initial ignition experiments in 2010-2011 only
begin to explore NIF’s potential

Expected NIF performance at 2ω
with optimized conversion
crystals and lenses

Potential NIF performance at 2ω
based on stored 1ω energy

Expected NIF
performance at 3ω
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NIF can explore direct drive or fast ignition
as alternate approaches to ignition

05-00-0696-1321

• Separate compression and ignition
• Potentially highest gain
• Short pulse physics is major issue

Fast Ignition
Polar Direct Drive

• Direct Drive in the Indirect Drive
  Geometry
• Higher coupling efficiency than
  indirect drive
• Beam smoothing and implosion
  symmetry are major challenges



The physics of inertial fusion shares much in common
with a wide variety of astrophysical phenomena



The NIF ignition experiments will be the culmination
of five decades of development which started with
the invention of the laser in 1960

• Dramatic advances in computations, lasers, diagnostics, and
target fabrication over the past 3 decades have laid the
groundwork for NIF and the National Ignition Campaign (NIC)

• We are designing precision experimental campaigns for hohlraum
driven implosions, which will take 100-200 shots leading up to the
first ignition attempts in 2010

• Targets near 1 MJ of laser energy have a credible chance for
ignition in early NIF operations

• The initial ignition experiments only scratch the surface of NIF’s
potential 

Ignition is a grand challenge undertaking. It is likely to take a few
years to achieve the required level of precision and understanding
of the physics and technology needed for success.






