Basics of Inertial Confinement Fusion

AAAS Annual Meeting 14-18 February - Boston

John Lindl NIF and Photon Science Directorate Chief Scientist Lawrence Livermore National Laboratory

> Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Fusion Represents an Inexhaustible Energy Supply for Mankind

- Fusion fuels deuterium (D) and tritium (T) are hydrogen isotopes
- 3/4 oz. of heavy water has the same energy content as 13,000 gallons of oll for D-D reaction, or 32,000 gallons of oll for D-T reaction
- Tritium is made from n + Li ⇒T + He
- Lithium is plentiful both in the earth's crust and oceans

- The challenge of Inertial Confinement Fusion
- Development of the science basis for ignition on the Nova and Omega laser
- Final steps on the path to ignition the National Ignition Campaign (NIC)
- Opportunities for the future on NIF

Fusion can be accomplished in three different ways

INTENSE

ENERGY

BEAMS

SUN 2000/06/28 19:19:44 UT

GRAVITATIONAL **CONFINEMENT** (High density for billions of years)

MAGNETIC **FIELD** NUCLEUS HH **MAGNETIC CONFINEMENT** (Low density for seconds) ELECTRON

The extreme conditions required for inertial fusion ignition are found only in stellar interiors and nuclear weapon tests

There are two principal approaches to compression in Inertial Confinement Fusion

The scale of ICF ignition experiments is determined by the limits to compression

 Constraints on x-ray drive and hydrodynamic instabilities limit implosion velocities to

V_{imp} < 400 kilometers/sec (~900,000 MPH)

and this limits the maximum compression

4000X solid DT density is ~100X the density of lead or ~10 times the density of the center of the Sun

X-rays enhance implosion symmetry and reduce hydrodynamic instability at a cost in efficiency

The National Ignition Campaigr

Fast Ignition is an approach to ICF which decouples compression from ignition

The National Ignition

- Central hot spot ignition relies on precise control of implosion symmetry and hydrodynamic instability
- Fast ignition will require significant advances in the understanding of charged particle production and transport at ultra-high intensity

Why do we believe that ignition will work on NIF?

- Over 3 decades of experiments on Nova, Omega and other facilities have provided an extensive data base to develop confidence in the numerical codes
- Benchmarked numerical simulations with radiation-hydrodynamics codes provide a first principles description of x-ray target performance (Laser-plasma interactions are treated separately with codes which are now becoming predictive for NIF-relevant plasmas)
- "The Halite/Centurion experiments using nuclear explosives have demonstrated excellent performance, putting to rest fundamental questions about the basic feasibility to achieve high gain" - from 1990 NRC review of ICF

From 1984 to 1999, the 10 beam, 30 kJ, 0.35 μm Nova laser was the central facility for indirect drive ICF

Nova Target Chamber

Implosion Experiment

The National Ignition Car

Advances in laser performance, precision diagnostics, and advanced modeling tools combined to establish the requirements for Ignition.

The Nova ignition physics program utilized targets which were scaled to test key issues

Gold

X-ray image of laser spots inside hohlraum

Advanced diagnostics have been central to measuring the phenomena critical to understanding NIF

MCP gated imagers were operated between 100 eV and 10 keV with 5-50 μ m, and 30-300 ps resolution

Compression of an ICF capsule requires exceptionally uniform drive pressure

Hohlraum axis: NIF hohlraums irradiate ignition capsules with symmetry similar to that of a basketball

On Nova and Omega, we demonstrated control of symmetry by varying the hohlraum length

The National Ignition Campaign

The Rayleigh-Taylor instability occurs when a heavy fluid "sits on top of" a light fluid

A similar situation occurs in ICF implosions

Observations from supernova SN1987A suggest strong mixing of the radiative core into the outer envelope

ICF Implosions are hydrodynamically unstable

The largest growth of perturbations occurs mainly on the outer surface during acceleration

∳ I DR

Feed through and initial roughness seeds inner surface Perturbations

Inner surface seeds grow on deceleration

20-00-1093-3875

a

Can be tested in planar experiments

The measured growth of ablative hydrodynamic instabilities in ICF agrees with numerical models

The National Ignition Campaign

We have validated our ability to model hohlraum temperatures in a broad range of experiments

The National Ignition Campaign

Parametric Laser plasma instabilities (LPI) limit the achievable hohlraum temperatures

Ignition target optimization must balance LPI effects, laser performance impacts, and capsule robustness

Ignition point design optimization must balance LPI effects, laser performance impacts, and capsule robustness

The NIF point design has a graded-doped, beryllium capsule in a hohlraum driven at 285 eV

Precision targets being developed for the NIF meet the ignition target requirements

Extensive 2D and 3D calculations are a central part of our strategy

The National Ignition Campaign is focused on preparing for the first ignition experiments in 2010

The National Ignition Campaign

Initial ignition experiments in 2010-2011 only begin to explore NIF's potential

Yields versus laser energy for NIF geometry hohlraums 300 Potential NIF performance at 2ω 200 eV based on stored 1ω energy 250 Expected NIF performance at 2ω with optimized conversion 210 eV 200 crystals and lenses Yield (MJ) Band is 150 uncertainty in hohlraum 225 eV performance **Expected NIF** performance at 3ω 100 250 eV 50 2010-2011 Tr(eV) 270 eV. experiments 300 eV 00 2 3 4 Laser energy (MJ)

NIF-0107-13186 26JL/cld

NIF can explore direct drive or fast ignition as alternate approaches to ignition

05-00-0696-1321

The physics of inertial fusion shares much in common with a wide variety of astrophysical phenomena

The NIF ignition experiments will be the culmination of five decades of development which started with the invention of the laser in 1960

- Dramatic advances in computations, lasers, diagnostics, and target fabrication over the past 3 decades have laid the groundwork for NIF and the National Ignition Campaign (NIC)
- We are designing precision experimental campaigns for hohlraum driven implosions, which will take 100-200 shots leading up to the first ignition attempts in 2010
- Targets near 1 MJ of laser energy have a credible chance for ignition in early NIF operations

Ignition is a grand challenge undertaking. It is likely to take a few years to achieve the required level of precision and understanding of the physics and technology needed for success.

The initial ignition experiments only scratch the surface of NIF's potential

