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High Power Microwave GenerationHigh Power Microwave Generation
• 1885-1889: Heinrich Hertz, generation and study 

of radio waves, confirming Maxwell’s theory
• 1917: Tesla proposed radio wave radar

H. Hertz, Karlsrühe Polytechnic,    
~ 1890

• 1920-1940: US, UK, France, Germany developed 
radar for ship & aircraft navigation and enemy 
plane detection

• RF radar: gave UK edge in Battle of Britain
• Microwave radar using UK-invented, US-

improved (MIT Rad Lab) and US-manufactured 
high power magnetrons enabled efficient 
airborne radar to detect U-boat periscopes, anti-
aircraft gun defenses, UK radar jammers, and 
provided air superiority to UK in WWII.

Boot & 
Randall 

magnetron, 
UK, 1939

• Post-war surpluses of magnetron and 
receiver hardware enabled basic research in 
microwave spectroscopy, atmospheric 
science, radar, maser, and radio astronomy

• Since WWII, continued advances in 
microwave generator power and frequency
have driven a large fraction of the advances 
in defense, commercial industry, and science



High Power Microwave Applications (using High Power Microwave Applications (using VEDsVEDs))

Testing and instrumentation
Materials processing
Industrial plasmas, especially for semiconductor 

manufacture

Industrial

Plasma heating and fusion energy research
Charged particle accelerators
Atmospheric radar
Radio astronomy
Medical/Biomedical
Spectroscopy
Deep space communications
Materials Processing research
Ground Penetrating Radar

Scientific

Radar: Search, Guidance, Track, Missile-seeker, Weather, Test      
Electronic Counter Measures (ECM)
High Power Microwave (HPM) Electronic Attack

Military

Broadcast media transmission (TV, radio)
Satellite communications
Cellular (wireless) communications
Radar, e.g.:  Air traffic control, Weather, Maritime
Global Positioning System
Domestic microwave cooking

Civilian infrastructure and 
consumer markets



Vacuum Vacuum vsvs Solid State        Solid State        
Microwave Power ElectronicsMicrowave Power Electronics

• Both convert kinetic energy 
(electron stream) to 
electromagnetic fields energy
– Solid state electronic devices: 

electron stream and fields in solid 
semiconductor

– Vacuum electronic devices: electron 
stream and fields in vacuum

• When high power density is 
needed, the advantages of 
vacuum outweigh vacuum 
packaging challenge and high 
voltage requirements 
– Managing and removing waste heat
– Breakdown limits

See Chapter 1, “Modern Microwave and Millimeter-Wave Power Electronics,” Eds. 
Barker, Booske, Luhmann, Nusinovich (IEEE/Wiley, 2005).
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Research 
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HPM frontier P ∝1/f 2

…BUT …  

For f > 100 GHz 
VEDs frontier

∝ 1/f2P

High power limit for 
Solid State ∝ 1/f 2

and
HPM 

Frontier

(Single Devices)
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The “THz” regime”The “THz” regime”
(THz and subTHz)

Jeff. Lab

TeraView
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Concealed Threat 
Detection, Imaging, 
Chemistry 
Spectroscopy, Space, 
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Recent vacuum Recent vacuum 
electronic device electronic device 

breakthroughs breakthroughs 
towards filling the towards filling the 

THz gap

NGC 
TWT 
Osc*

Jefferson 
Lab FEL

Novosibirsk 
FEL
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Modified edge of Modified edge of 
the frontier, the frontier, 

given that many given that many 
THz applications THz applications 
require require compactcompact

and and mobilemobile
sources with sources with 
high average high average 

power
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High Power Research FrontierHigh Power Research Frontier

• Apparently two frontiers
– Constant Pf2 limit of HPM (1-100 GHz)
– mmwave-to-THz, or “THz” gap (100 – 1000 GHz)

• Not so separate as they might seem: they share 
common “plasma physics” and related 
challenges of high power density:
– Dense electron beams
– Maximizing RF power density



ScalingScaling

(Surface) breakdown

Robust yet precise 
circuit fabrication

HPM: P ↑ at constant f THz: f ↑ at constant P

(10 MW)/(10 cm × 10 cm) 

~ 1 MW/cm2

(100 W)/(0.1 λ0 × 0.1 λ0) 

~ 1 MW/cm2 (@ 300 GHz)

High EM 
Power Density

Beam Impact

Beam Generation

Beam Confinement

Dense Electron 
Beams



High Power Density: RF BreakdownHigh Power Density: RF Breakdown
Neuber, et al, Phys. Plasmas, 14, 
057102 (2007)

2.85 GHz 
TTU

110 GHz 
MIT

Hidaka, et al, Phys. Rev. Lett., in review (2007)
See also Poster TP8 42, Hidaka, et al, Thurs AM

• Inside the vacuum device
– Arcing damage
– Interrupted operation 

• Outside the vacuum
– Reflected radiation

• Intense E fields 
• Experiments

– E = f(p, τ)

– Surface & UV effects at < 10 
GHz and < 300 torr (TTU)

– No UV or surface effects at 110 
GHz, 760 torr but filamentation
dominant (MIT)

– E ~ 20-30 kV/cm @ 760 torr
(AFRL, MIT, UW, 1 GHz – UV 
laser)



RF Breakdown: Theoretical UnderstandingRF Breakdown: Theoretical Understanding
• Vacuum

– Surface breakdown via 
multipactor
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– Primarily accelerator cavities

E > ~ 108 V/m

• High Pressure
– Avalanche gas breakdown via 

avalanche ionization
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See also, Oral Talk NO7, Wed morning, Nam, et al.
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• Conclusions: 
– E for breakdown is ~ constant 

with frequency, or…

• Vacuum Breakdown

• Air Breakdown
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– Breakdown a limiting 

phenomenon for f < ~100 GHz
– Breakdown is not the limiting 

issue for f > ~100 GHz

Braun, et al, PRL, vol 90, 
224801 (2003)

Frequency scalingFrequency scaling



High Power Density:                   High Power Density:                   
THz Circuit FabricationTHz Circuit Fabrication

• Limiting phenomenon: circuit sizes required for compact generators 
at f > 100 GHz
– rcircuit/tunnel ~ 0.1λ0 and rbeam ~ rckt/2

• For “as-designed” performance, need dimensional errors < ~ 3%
[Pengvanich, et al, IEEE TED (to be published, 2008)]
See also, Poster TP8 39, Pengvanich, Thursday, AM

• How to make and assemble such precise circuits with high yield?
• Recent, intensive efforts to adapt MEMS microfabrication techniques 

to high frequency VEDs
– 3D, mechanically and thermally robust
– Many approaches under investigation

• High speed micro-milling
• Micro-EDM
• Laser micromachining
• Deep Reactive Ion Etching of Si (both circuits and molds)
• Xray LIGA
• UV LIGA



MicrofabMicrofab Circuit ExamplesCircuit Examples

Laser 
micromachined
meanderline circuit 
(UW/CCR)

DRIE 
meanderline
circuit 
(UW/CCR)

FWG made by xray LIGA (SNU)

High speed micro-milling

(SLAC/UCD)
94 GHz 
klystron

DRIE FWG

UW’s DRIE FWGs in Si 
used by NGC for 670 

GHz THz TWT 
oscillator

Si molded 
diamond

GenVac

• Emerging “front-runners”
– Micro EDM (< 10 µm wire diameter)
– Deep Reactive Ion Etching of Si



Small Circuits + High Power = Dense BeamsSmall Circuits + High Power = Dense Beams

• Reference device: 5 GHz, 100 W TWT amplifier

– 2.5 kV, 0.2 A, 20 A/cm2, rckt ~ 0.02λ0 for compact high gain & efficiency

• Scale to 200 GHz at constant voltage…λ decreases by 40 X

FE ∝ J
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Scaling Challenges and OptionsScaling Challenges and Options
• Scale 5 GHz, 100 W TWT amplifier to 200 GHz

– 2.5 kV, 0.2 A, 20 A/cm2, rckt ~ 0.02λ0 for compact high gain & efficiency
• Bmax ~ 10 kG

r ↑ 5 XConstant V V → 20 kV
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Recent HighRecent High--J Cathode resultsJ Cathode results
Field EmissionField Emission--pulsedpulsedField EmissionField Emission--DCDC

Gated Mo-tip field 
emitter array

(650 A/cm2)

8 cm

Al ALF Laser-micro-textured 
aluminum cathode 

(UMich)

Sandia Natl Lab    
80,000 A @ 4 MV   (1.6 

kA/cm2)

Thermionic EmissionThermionic Emission Csi-coated graphite 
fiber (AFRL-Kirtland)

> 10X reduction in 
Eturnon due to CsI

106 shots

Up to 1 kA/cm2Scandate
nanoparticles in 

porous Ba-doped 
W matrix

(BVERI)

(SLAC-
UCD)

1 mm

HfO MOTrip
Metal oxide Triple 

Point cathode (UMich)

Gain extra ~ 80 A/cm2

Posters TP8 36, 37 
Thurs AM



Advancing cathode physics:   Advancing cathode physics:   
Minimizing Minimizing EEturnturn--onon

Hi-res SEM
Cs
I

C

Ab initio 
computational 

modeling 
(V.A.S.P.)

CsI thin film

CsI treatment 
reduces Eturn-on by 

10-20X
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Vlahos, Morgan, Booske 
APL 91, 144102 (2007)



Advancing cathode physics:Advancing cathode physics:
understanding field enhancementunderstanding field enhancement

Al PAL (UM)

500 µm

• Experimental studies [X.He, et al, Conf Proc IEEE IVNC, 2007] indicate that β~ 9-
10 experimentally with ridges like these, when β~ 3 according to E-static calcs

• Recently derived the vacuum field enhancement factor for knife edge using 
conformal mapping*

• Asked question: what if decorated by small “invisible” features? What is net field 
enhancement?

• Derived result again for rectangular ridges (knife edges)

• Effect is not additive or dominated by one feature…effect is multiplicative
• Confirms and proves conjecture by Schottky [(Z. Physik 14, 63,(1923)]

a
h

a
h

ah
∝×≅

>> 4
πβ

h
2a

h
2a

h*

2a*

*
*

44
*

** a
h

a
h

ahah

ππβ ×≅
>>>>>>

* Miller, Lau, and Booske, APL 91, 074105. (2007)
See also, Poster TP8 38, Thursday AM



DC Dense Beam Cathode SummaryDC Dense Beam Cathode Summary
• Generating dense beams, i.e., cathodes
• Maximum cathode emission 

– Field emission—laboratory  < 650 A/cm2

– Thermionic—short life (~ 100s hrs)  < 150 A/cm2

– Field emission—device < 20 A/cm2

– Thermionic—long-life (1000s hrs) < 10 A/cm2
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Advancing cathode physics:          Advancing cathode physics:          
emission uniformityemission uniformity

• Mode competition and 
efficiency of vacuum electron 
devices  are affected by the 
uniformity of electron beam

• High power mmwave gyrotron
cathode emission is not 
uniform

• Two theories, both implicating 
mechanical machining and 
fabrication

• Measurements at CCR 
underway with new cathodes 
made with new diamond 
cutting and Ba impregnation 
processes

Anderson et. al , IEEE-T
Jensen, Lau, Jordan,  APL  

110 GHz, 1.5 MW gyrotron (MIT)
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Dense beam impact physicsDense beam impact physics
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Beam Impact: experimental illustrationBeam Impact: experimental illustration
• SLAC Klystrino: 94 GHz, 1 kW klystron 

– G. Scheitrum, et al, IEEE I.V.E.C. Conf Digest (2002)
• 110 kV, 2.4 A, 0.25 mm radius
• Magnetic focusing design had small error near output (quadrupole

leakage fields)
• Beam interception at exit of circuit

– ~ 1 mm2 impact area
– ~ 1 MW/cm2

– t ~ 5 µs
– Exceeded single pulse damage threshold

• 3D Electron optics and magnetic design codes are better now
• Superior approaches currently being pursued (…more shortly)

Courtesy, G. Scheitrum, 2007



Additional Challenge: Additional Challenge: at high frequencies, at high frequencies, 
space charge not the magnetic focusing limitspace charge not the magnetic focusing limit

2
2

2
022 22 εωω 





+≥
a
u

pc

2
22 82
ma
kT

pc
⊥+≥ ωω

or
J.D. Lawson, The 
Physics of Charged 
Particle Beams 
(Oxford, 1977)

• Electrons have random 
transverse velocities

• Magnetic field must confine 
both space charge and 
transverse “pressure gradient” 
defocusing forces (emittance)

• Typical well-designed VED 
beam has ε ~ 3 mm-mrad
– Edge emission 

• J.M. Finn, et al, IEEE T.P.S. 16, 
281 (1988)

– Roughness 
• Y.Y. Lau, J.A.P. 61, 36 (1987)

• Scaled 100 W, TWT with 20 kV 
and max radius
– kT⊥~ 5-10 eV @ 200 GHz
– Single-gate FEAs, kT⊥~ 10 eV



Recap: higher compact THz powerRecap: higher compact THz power

Want compact high 
power (> 1-10 W) at    

f > 100 GHz)

More current in 
smaller circuit

Constant voltage   
~ 3 kV

Increase V to    
~ 20 kV

Magnetic focusing 
of space charge 

OK

Need 
high-J
beams

Ongoing R&D
• Field emission cathodes
• Thermionic cathodes

Transverse 
emittance exceeds 
magnetic focusing

rf breakdown 
not a concern

Beam power 
density 

exceeds single 
pulse damage 

threshold

Reconsider…

Space charge 
exceeds magnetic 

focusing
           



Alternative: Distributed BeamsAlternative: Distributed Beams
• Objective: high beam current in small (high 

frequency) “circuits”
• Reduce current density by spreading out beam 

in one dimension, but leave other dimension 
small

• Options
Multibeams Sheet Beams

• New challenge: stable beam focusing…
Bz

vEXB

E



Magnetic focusing of distributed beamsMagnetic focusing of distributed beams
Basten and Booske, 

J.Appl.Phys., 85, 6313 
(1999)

• Or…use wiggler focusing 
(Booske, et al., J.A.P., 64, 6 
(1988)

• Or…use solenoid focusing for 
short distances

• How short?...subject for 
additional research

• Scaling,

• High B, low beam density
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MultibeamsMultibeams face similar issuesface similar issues

• “Smearing” distance, zs ≤ u0t┴.
• For 10 A/cm2 and 20 kV, 

zs (cm) ≤ ~ 125/f(GHz)

(thickness grows more slowly)

t┴= a/vE×B



Illustrative successful application of Illustrative successful application of 
sheet beam approachsheet beam approach

• SLAC 94 GHz 1 kW sheet 
beam klystron
– 74 kV, 3.6 A, 
– 1.1 kG offset PCM focusing

• > 90% transmission, no 
circuit damage
– power density below single 

pulse damage threshold
– G. Scheitrum, et al, IEEE 

IVEC Conf. Proc. (2006)
• Also, 

– LANL:  Carlsten, et al, 
PRSTAB 8, 062002 (2005)

– NRL: Cooke, et al, 2006 
IEEE I.V.E.C, 487-488.



RecapRecap
Want compact high 
power (> 1-10 W) at    

f > 100 GHz)

More current in 
smaller circuit

Distributed 
beams to 
get below 

single pulse 
damage 
threshold

For f > 200 GHz, 
transverse emittance

exceeds magnetic 
focusing

Need lower transverse 
emittance beams!



Reducing transverse beam Reducing transverse beam emittanceemittance
• Beam cooling 

– Carlsten and Bishofberger, New J. Phys. 8, 286 (2006).
– Only for elliptical beams and requires extra magnetic optics
– 10X reduction in ε, kT┴

10 A/cm2 sheet beam

C.M. Tang, et al  JVST B
14, 3455 (1996)

C.A. Spindt, et al, in 
Vacuum Microelectronics

(Wiley, 2001)

• Advanced FEA cathodes with integral focus electrode, kT┴ ≤ 1 eV

• Meanwhile, dimensions above 200 GHz may well require 
microfabricated cathodes (i.e., FEAs) to reliably achieve precise 
dimension and alignment tolerances.



RecapRecap
Want compact high 
power (> 1-10 W) at    

f > 100 GHz)

More current in 
smaller circuit

Distributed 
beams to 
get below 

single pulse 
damage 
threshold

For f > 200 GHz, need 
low emittance beams 

with precise 
dimensional 
tolerances

Advanced, 
microfabricated field 

emitter (cold) cathodes 
with integral focusing

Microfabricated
circuits

success

?



What’s left to do?What’s left to do?
• Low emittance, uniform emission, high current density, long-life, 

distributed beam cathodes and “matching optics”
– kT┴ < 1 eV
– J ~ 10 A/cm2

• Advanced, quantitative, experimentally benchmarked studies of 
sheet and/or multibeam confinement and transport
– Solenoidal fields
– PCM/PPM fields

• Establish knowledge of best microfabrication approaches and 
microfabricated circuit performance
– Precision-aligned assembly
– Circuit attenuation, input/output coupling, vacuum packaging and

windows
• Studies of electromagnetic mode control with overmoded distributed 

beam, high power circuits
– Sheet beam & multibeam circuits
– RF wall losses

• Amplifiers



Simulation toolsSimulation tools
• How we’ve arrived here…

– 3D EM models (steady state and time-dependent)
– 3D steady state electron optics (trajectory) codes
– 3D PIC codes for time-dependent particles + EM fields
– 3D thermo-mechanical models
– Ab Initio surface physics models

• Persistent, aggressive, detailed benchmarking against 
experiments

• Persistent institutional and individual leadership and 
investment
– U.S. Naval Research Laboratory
– U.S. Air Force Office of Scientific Research/AFRL
– …and many more…

[Ch. 10, in Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005)]
[Ch. 11, in High Power Microwave Sources and Technologies, Eds. Barker, Schamiloglu

(IEEE, 2001)]



SummarySummary
• Vacuum electronic devices offer significant 

potential for applications in the (mmwave-to)-
THz regime (~ 100 - 1000 GHz) that need 
compact high power
– Advanced communications and radar
– Concealed threat detection
– Imaging…

• What will it take to push back the frontier?
– High power densities
– High current electron beams

• Common requirements and similar challenges 
with HPM (< 100 GHz)
– Electronic attack
– RF accelerators



Recent BreakthroughsRecent Breakthroughs

• Fabrication and engineering of miniature 
circuits

• Understanding rf breakdown
• New cathodes
• Understanding cathode emission physics



Challenges at the FrontierChallenges at the Frontier
• High EM power density

• HPM: delayed rf breakdown in air and vacuum
• THz: mechanically and thermally robust miniature structures

• High current electron beams
– Cathodes

• HPM and THz: Long life and uniform emission
• THz: Low emittance beams

– Beam impact and collection
• HPM: anode plasmas
• HPM and THz: SEE physics, thermal engineering, materials choices

– Beam confinement
• THz: Transport & magnetic focusing physics for distributed beams
• THz: Cathode and device engineering for precision alignment

……In other wordsIn other words……



……there’s still a lot of fun to be had!there’s still a lot of fun to be had!



THz TWT oscillatorTHz TWT oscillator
• TWT amplifier with regenerative 

feedback

• Precision microfabricated circuit

• DRIE Si folded waveguide circuit

• *0.3% rf efficiency! (> 10× higher 
than BWOs)

• Tucek, et al, Conf Proc. IEEE 
IVEC 2007 (Kitakyushu, Japan)

Regenerative 
TWT OscillatorBWO

Bhattacharjee, 
Booske, 
vanderWeide, et al, 
IEEE T.P.S. 32, 
1002 (2004)



State of art in compact State of art in compact mmwavemmwave
dense beam focusingdense beam focusing

CPI Canada 

3 kW peak 

94 GHz EIK

• I ~ 0.6 A
• Jcathode = 10 A/cm2

• Jbeam ~ 700 – 800 A/cm2

• V ~ 16 kV  
• ~ 1-10 MW/cm2 (beam power density)



Advancing cathode physics:      Advancing cathode physics:      
understanding differences in understanding differences in JJmaxmax

• Child-Langmuir law relates J to Vanode

• 1000 A/cm2 requires 
– Large (!) anode voltage to extract 

electrons from cathode
• OK with short pulse HPM applications
• Arcing with DC or long-pulse 

applications
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(2001)

Also, poster TP8 40, 
Ragan-Kelley, Verboncoeur
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