

Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation

John H. Booske

University of Wisconsin-Madison Electrical and Computer Engineering

Credits

- Hundreds of colleagues and students (grad and undergrad)
- Particular recognition to the university, national laboratory and industrial colleagues and students working collaboratively with and within consortia
 - MURI-99 "Innovative Microwave Vacuum Electronics"
 - MURI-04 "Nanophysics of HPM Cathodes and RF Breakdown"
 - and on various funded and unfunded projects in recent years...
- US-AFOSR, US-ARO, UW, NGC, L3-Comm,...
- Special thanks to APS-DPP Program Committee

High Power Microwave Generation

- <u>1885-1889</u>: Heinrich Hertz, generation and study of radio waves, confirming Maxwell's theory
- <u>1917:</u> Tesla proposed radio wave radar
- <u>1920-1940</u>: US, UK, France, Germany developed radar for ship & aircraft navigation and enemy plane detection
- <u>RF radar</u>: gave UK edge in Battle of Britain
- Microwave radar using UK-invented, USimproved (MIT Rad Lab) and US-manufactured <u>high power magnetrons</u> enabled efficient airborne radar to detect U-boat periscopes, antiaircraft gun defenses, UK radar jammers, and provided air superiority to UK in WWII.
- <u>Post-war surpluses</u> of magnetron and receiver hardware <u>enabled basic research</u> in microwave spectroscopy, atmospheric science, radar, maser, and radio astronomy
- Since WWII, <u>continued advances in</u> <u>microwave generator power and frequency</u> have driven a large fraction of the advances in defense, commercial industry, and science

H. Hertz, Karlsrühe Polytechnic, ~ 1890

High Power Microwave Applications (using VEDs)

Civilian infrastructure and consumer markets	Broadcast media transmission (TV, radio) Satellite communications Cellular (wireless) communications Radar, e.g.: Air traffic control, Weather, Maritime Global Positioning System Domestic microwave cooking
Military	Radar: Search, Guidance, Track, Missile-seeker, Weather, Test Electronic Counter Measures (ECM) High Power Microwave (HPM) Electronic Attack
Scientific	Plasma heating and fusion energy research Charged particle accelerators Atmospheric radar Radio astronomy Medical/Biomedical Spectroscopy Deep space communications Materials Processing research Ground Penetrating Radar
Industrial	Testing and instrumentation Materials processing Industrial plasmas, especially for semiconductor manufacture

Vacuum vs Solid State Microwave Power Electronics

- Both convert kinetic energy (electron stream) to electromagnetic fields energy
 - Solid state electronic devices: electron stream and fields in solid semiconductor
 - Vacuum electronic devices: electron stream and fields in vacuum
- When high power density is needed, the advantages of vacuum outweigh vacuum packaging challenge and high voltage requirements
 - Managing and removing waste heat
 - Breakdown limits

See Chapter 1, "Modern Microwave and Millimeter-Wave Power Electronics," Eds. Barker, Booske, Luhmann, Nusinovich (IEEE/Wiley, 2005).

VISCONSIN * note: a

* note: does not include peak power from FELs above 100 GHz

The "THz" regime"

Recent vacuum electronic device breakthroughs towards filling the THz gap

* note: does not include peak power from FELs above 100 GHz

Modified edge of the frontier, given that many THz applications require <u>compact</u> and <u>mobile</u> sources with <u>high average</u> <u>power</u>

High Power Research Frontier

- Apparently two frontiers
 - Constant *Pf*² limit of HPM (1-100 GHz)
 - mmwave-to-THz, or "THz" gap (100 1000 GHz)
- Not so separate as they might seem: they share common "plasma physics" and related challenges of high power density:
 - Dense electron beams
 - Maximizing RF power density

High Power Density: RF Breakdown

- Inside the vacuum device
 - Arcing damage
 - Interrupted operation
- Outside the vacuum
 - Reflected radiation
- Intense E fields
- Experiments
 - $E = f(p, \tau)$
 - Surface & UV effects at < 10 GHz and < 300 torr (TTU)
 - No UV or surface effects at 110 GHz, 760 torr but filamentation dominant (MIT)
 - E ~ 20-30 kV/cm @ 760 torr (AFRL, MIT, UW, 1 GHz – UV laser)

Hidaka, et al, Phys. Rev. Lett., in review (2007) **See also Poster TP8 42, Hidaka, et al, Thurs AM**

RF Breakdown: Theoretical Understanding

- Vacuum
 - Surface breakdown via multipactor

$$\tau_{transit} = 2m v_0 / eE_0 = T/2$$
 & $\gamma(W_i) > 1$
or field emission

 $E > \sim 10^8 \text{ V/m}$

- Primarily accelerator cavities
- High Pressure
 - Avalanche gas breakdown via avalanche ionization

$$E_{eff}$$
 [V/cm] $\approx K \sqrt{\frac{p(\text{torr})}{\tau(s)}} \qquad \begin{cases} K \sim 0.05, \text{ noble gases} \\ K \sim 1, \text{ air} \end{cases}$

Lau, Verboncoeur, Kim, Appl. Phys. Lett. 89, 261501 (2006)

See also, Oral Talk NO7, Wed morning, Nam, et al. <u>WISCONSIN</u> MADISON

P*tau (torr-s)

Maximum Surface Field (MV/m)

Vacuum Breakdown

Braun, et al, PRL, vol 90, 224801 (2003)

Air Breakdown

 $E_{eff} \approx \frac{E_0/\sqrt{2}}{\sqrt{1 + (\omega/v_{coll})^2}} \sim 20 - 30 \text{ kV/cm}$

- Conclusions:
 - E for breakdown is ~ constant with frequency, or...

$$E_{BD} \sim \sqrt{Pf^2}$$

- Breakdown a limiting phenomenon for f < ~100 GHz
- Breakdown is not the limiting issue for f > ~100 GHz

High Power Density: THz Circuit Fabrication

- Limiting phenomenon: circuit sizes required for compact generators at *f* > 100 GHz
 - $r_{\text{circuit/tunnel}} \sim 0.1\lambda_0$ and $r_{\text{beam}} \sim r_{\text{ckt}}/2$
- For "as-designed" performance, need dimensional errors < ~ 3% [Pengvanich, et al, IEEE TED (to be published, 2008)]
 See also, Poster TP8 39, Pengvanich, Thursday, AM
- How to make and assemble such precise circuits with high yield?
- Recent, intensive efforts to adapt MEMS microfabrication techniques to high frequency VEDs
 - 3D, mechanically and thermally robust
 - Many approaches under investigation
 - High speed micro-milling
 - Micro-EDM
 - Laser micromachining
 - Deep Reactive Ion Etching of Si (both circuits and molds)
 - Xray LIGA
 - UV LIGA

Microfab Circuit Examples

Laser micromachined meanderline circuit (UW/CCR)

DRIE

circuit

meanderline

(UW/CCR)

UW's DRIE FWGs in Si used by NGC for 670 GHz THz TWT oscillator

• Emerging "front-runners"

FWG made by xray LIGA (SNU)

- Micro EDM (< 10 μ m wire diameter)
 - Deep Reactive Ion Etching of Si

Small Circuits + High Power = Dense Beams

- Reference device: 5 GHz, 100 W TWT amplifier
 - 2.5 kV, 0.2 A, 20 A/cm², $r_{ckt} \sim 0.02 \lambda_0$ for compact high gain & efficiency
- Scale to 200 GHz at constant voltage... λ decreases by 40 X

Scaling Challenges and Options

- Scale 5 GHz, 100 W TWT amplifier to 200 GHz – 2.5 kV, 0.2 A, 20 A/cm², $r_{ckt} \sim 0.02\lambda_0$ for compact high gain & efficiency
- B_{max} ~ 10 kG

WISCONSIN MADISON

Recent High-J Cathode results

Field Emission-DC

Gated Mo-tip field emitter array

Thermionic Emission

Scandate nanoparticles in porous Ba-doped W matrix (BVERI)

Field Emission-pulsed

Laser-micro-textured aluminum cathode (UMich)

Sandia Natl I ab 80,000 A @ 4 MV (1.6 kA/cm^2)

Csi-coated graphite fiber (AFRL-Kirtland)

> 10X reduction in *E*_{turnon} due to CsI 10^6 shots

Up to 1 kA/cm^2

Metal oxide Triple Point cathode (UMich)

Gain extra ~ 80 A/cm² **Posters TP8 36, 37** Thurs AM

Advancing cathode physics: Minimizing E_{turn-on} Vlahos, Morgan, Booske APL 91, 144102 (2007)

Advancing cathode physics: understanding field enhancement

- Experimental studies [X.He, et al, Conf Proc IEEE IVNC, 2007] indicate that β~ 9-10 experimentally with ridges like these, when β~ 3 according to E-static calcs
- Recently derived the vacuum field enhancement factor for knife edge using conformal mapping*

$$\left|\beta\right|_{h>>a} \cong \sqrt{\frac{\pi}{4}} \times \sqrt{\frac{h}{a}} \propto \sqrt{\frac{h}{a}}$$

2a*

- Asked question: what if decorated by small "invisible" features? What is net field enhancement?
- Derived result again for rectangular ridges (knife edges)

- Effect is not additive or dominated by one feature ... effect is *multiplicative*
- Confirms and proves conjecture by Schottky [(Z. Physik 14, 63,(1923)]
 * Miller, Lau, and Booske, APL 91, 074105. (2007)
 See also, Poster TP8 38, Thursday AM

DC Dense Beam Cathode Summary

- Generating dense beams, i.e., cathodes
- Maximum cathode emission
 - Field emission—laboratory < 650 A/cm²
 - Thermionic—short life (~ 100s hrs) < 150 A/cm²
 - Field emission—device < 20 A/cm²
 - Thermionic—long-life (1000s hrs) < 10 A/cm²

Advancing cathode physics: emission uniformity

- Mode competition and efficiency of vacuum electron devices are affected by the uniformity of electron beam
- High power mmwave gyrotron cathode emission is *not* uniform
- Two theories, both implicating mechanical machining and fabrication

Anderson et. al , IEEE-TED 52, p. 825, 2005 Jensen, Lau, Jordan, APL **88** 164105 (2006)

 Measurements at CCR underway with new cathodes made with new diamond cutting and Ba impregnation processes

110 GHz, 1.5 MW gyrotron (MIT)

Dense beam impact physics

$$T(0,0,0,t) = \frac{V_b J_b}{d\rho c} \int_0^t d\tau \left[\operatorname{erf}\left(\sqrt{\frac{t_r}{4\tau}}\right) \right]^2 \operatorname{erf}\left(\sqrt{\frac{t_z}{4\tau}}\right),$$

$$t_r = \frac{R_b^2}{D} \quad , \ t_z = \frac{d^2}{D}$$

(assume square cross section beam for easy math)

Beam Impact: experimental illustration

- SLAC *Klystrino*: 94 GHz, 1 kW klystron
 - G. Scheitrum, et al, IEEE I.V.E.C. Conf Digest (2002)
- 110 kV, 2.4 A, 0.25 mm radius
- Magnetic focusing design had small error near output (quadrupole leakage fields)
- Beam interception at exit of circuit
 - ~ 1 mm² impact area
 - ~ 1 MW/cm²
 - t ~ 5 μ s
 - Exceeded single pulse damage threshold
- 3D Electron optics and magnetic design codes are better now
- Superior approaches currently being pursued (...more shortly)

Additional Challenge: at high frequencies, space charge not the magnetic focusing limit

- Electrons have random transverse velocities
- Magnetic field must confine both space charge and transverse "pressure gradient" defocusing forces (*emittance*)
- Typical well-designed VED beam has ε ~ 3 mm-mrad
 - Edge emission
 - J.M. Finn, et al, IEEE T.P.S. 16, 281 (1988)
 - Roughness
 - Y.Y. Lau, J.A.P. 61, 36 (1987)
- Scaled 100 W, TWT with 20 kV and max radius
 - kT_⊥~ 5-10 eV @ 200 GHz
 - Single-gate FEAs, kT_{\perp} ~ 10 eV

$$\omega_c^2 \ge 2\omega_p^2 + \left(\frac{2u_0}{a^2}\right)^2 \varepsilon^2$$
or
$$\omega_c^2 \ge 2\omega_p^2 + \frac{8kT_\perp}{ma^2}$$

J.D. Lawson, The Physics of Charged Particle Beams (Oxford, 1977)

Alternative: Distributed Beams

- Objective: high beam *current* in small (high frequency) "circuits"
- Reduce current density by spreading out beam in one dimension, but leave other dimension small
- Options
 <u>Multibeams</u>

• New challenge: stable beam focusing...

Magnetic focusing of distributed beams

Multibeams face similar issues

- "Smearing" distance, $z_s \le u_0 t_{\perp}$.
- For 10 A/cm² and 20 kV,

$$z_s (cm) \le \sim 125/f(GHz)$$

(thickness grows more slowly)

Illustrative successful application of sheet beam approach

- SLAC 94 GHz 1 kW sheet beam klystron
 - 74 kV, 3.6 A,
 - 1.1 kG offset PCM focusing
- > 90% transmission, no circuit damage
 - power density below single pulse damage threshold
 - G. Scheitrum, et al, IEEE
 IVEC Conf. Proc. (2006)
- Also,
 - LANL: Carlsten, et al, PRSTAB 8, 062002 (2005)
 - NRL: Cooke, et al, 2006
 IEEE I.V.E.C, 487-488.

Want compact high power (> 1-10 W) at f > 100 GHz)

 More current in smaller circuit Distributed beams to get below single pulse damage threshold

Need lower transverse emittance beams!

For f > 200 GHz, transverse emittance exceeds magnetic focusing

Reducing transverse beam emittance

- Beam cooling
 - Carlsten and Bishofberger, New J. Phys. 8, 286 (2006).
 - Only for elliptical beams and requires extra magnetic optics
 - 10X reduction in ϵ , kT_⊥
- Advanced FEA cathodes with integral focus electrode, $kT_{\perp} \le 1 \text{ eV}$

 Meanwhile, dimensions above 200 GHz may well require microfabricated cathodes (i.e., FEAs) to reliably achieve precise dimension and alignment tolerances.

What's left to do?

- Low emittance, uniform emission, high current density, *long-life*, distributed beam cathodes and "matching optics"
 - $kT_{\perp} < 1 eV$
 - $J \sim 10 A/cm^2$
- Advanced, quantitative, experimentally benchmarked studies of sheet and/or multibeam confinement and transport
 - Solenoidal fields
 - PCM/PPM fields
- Establish knowledge of best microfabrication approaches and microfabricated circuit performance
 - Precision-aligned assembly
 - Circuit attenuation, input/output coupling, vacuum packaging and windows
- Studies of electromagnetic mode control with overmoded distributed beam, high power circuits
 - Sheet beam & multibeam circuits
 - RF wall losses
- Amplifiers

Simulation tools

- How we've arrived here...
 - 3D EM models (steady state and time-dependent)
 - 3D steady state electron optics (trajectory) codes
 - 3D PIC codes for time-dependent particles + EM fields
 - 3D thermo-mechanical models
 - Ab Initio surface physics models
- Persistent, aggressive, detailed benchmarking against experiments
- Persistent institutional and individual leadership and investment
 - U.S. Naval Research Laboratory
 - U.S. Air Force Office of Scientific Research/AFRL
 - …and many more…

[Ch. 10, in Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005)]
 [Ch. 11, in High Power Microwave Sources and Technologies, Eds. Barker, Schamiloglu (IEEE, 2001)]

- Vacuum electronic devices offer significant potential for applications in the (mmwave-to)-THz regime (~ 100 - 1000 GHz) that need compact high power
 - Advanced communications and radar
 - Concealed threat detection
 - Imaging...
- What will it take to push back the frontier?
 - High power densities
 - High current electron beams
- Common requirements and similar challenges with HPM (< 100 GHz)
 - Electronic attack
 - RF accelerators

Recent Breakthroughs

- Fabrication and engineering of miniature circuits
- Understanding rf breakdown
- New cathodes
- Understanding cathode emission physics

Challenges at the Frontier

- High EM power density
 - HPM: delayed rf breakdown in air and vacuum
 - THz: mechanically and thermally robust miniature structures
- High current electron beams
 - Cathodes
 - HPM and THz: Long life and uniform emission
 - THz: Low emittance beams
 - Beam impact and collection
 - HPM: anode plasmas
 - HPM and THz: SEE physics, thermal engineering, materials choices
 - Beam confinement
 - THz: Transport & magnetic focusing physics for distributed beams
 - THz: Cathode and device engineering for precision alignment

...In other words...

...there's still a lot of fun to be had!

THz TWT oscillator

- TWT amplifier with regenerative feedback
- Precision microfabricated circuit
- DRIE Si folded waveguide circuit
- *0.3% rf efficiency! (> 10× higher than BWOs)
- Tucek, et al, Conf Proc. IEEE IVEC 2007 (Kitakyushu, Japan)

Regenerative

Bhattacharjee, Booske, vanderWeide, et al, IEEE T.P.S. **32**, 1002 (2004)

State of art in compact mmwave dense beam focusing

CPI Canada 3 kW peak 94 GHz EIK

- I ~ 0.6 A
- $J_{cathode} = 10 \text{ A/cm}^2$
- J_{beam} ~ 700 800 A/cm²
- V ~ 16 kV
- ~ 1-10 MW/cm² (beam power density)

Advancing cathode physics: understanding differences in J_{max}

• Child-Langmuir law relates J to V_{anode}

$$J[\text{A/cm}^2] = \rho u = 2.33 \times 10^{-6} \frac{V^{3/2}}{d^2}$$

- 1000 A/cm² requires
 - Large (!) anode voltage to extract electrons from cathode
 - OK with short pulse HPM applications

 $\frac{J_{CL}(2\mathrm{D})}{J_{CL}(1\mathrm{D})} \approx 1 + \frac{d}{4R}$

- Arcing with DC or long-pulse applications
- Small area cathodes (low currents not useful for high power)

Y.Y. Lau, *PRL* **87**, 278301 (2001)

Also, poster TP8 40, Ragan-Kelley, Verboncoeur

anode voltage (kV)