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Creating and Controlling a Burning Plasma 

in the Laboratory



A Decade of Studies has Identified the 
Requirements for Attractive Fusion Power 

Fusion Power Plant
ARIES-AT

Fusion Power 1,800 MW
Plasma Volume   350 m3

• A burning plasma experiment needs the capability
  to explore advanced tokamak operation

Advanced Tokamak Features

• Self heated by fusion products (~90%)

•  Smaller size 

 - Improved confinement (reduced turbulence)

•  High fusion power density for economics

 - ~ p2  ~ β2B4   (βN > 4)

• Efficient steady - state operation

 - self generated confinement magnetic field
  (bootstrap current)   (~90%)  



Alpha Physics Issues

•  Alpha confinement

•  Alpha Energy to Plasma

 from alphas

 to plasma electrons

•  Burn Control

•  Alpha Ash Removal

•  Alpha Driven Instabilities

 Self-Heating is Critical for a D-T Fusion Reactor

D+

T+

He++

Alpha 20 %

The self-heating rate is  ~ (nT)   ~ p   for  T between 10 - 25 keV
The pressure profile depends on heating rate and transport profile.

Neutron
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PExt
Q = 

PFusion
PExt

fαααα = 
Palpha
PHeat

= 
Q

Q + 5
,

dmeade

dmeade
2

dmeade
2

dmeade
2



100

10

1

0.1

0.01

0.001

0.0001
0.1 1 10 100

100

10

1

0.1

0.01

0.001

0.0001
0.1 1 10 100

Q ~ 0.1

Central Ion Temperature (keV)

L
aw

so
n

 F
u

si
o

n
 P

ar
am

et
er

, n
iT

iτ E
 (

10
20

 m
-3

ke
v 

s)
 

Central Ion Temperature (keV)

Tokamaks 1993-99

Q ~ 0.001

Q ~ 0.0001

Q  = WFusion/WInput

Deuterium - Tritium Plasmas

Magnetic Fusion is Technically Ready for a High Gain Burning Exp't

Ignition

Q ~ 10

Tokamaks 1990-1999

Tokamaks  1980
Stellarator  1998

Stellarator  1996

Tokamak  1969 (T-3)

Reversed Field Pinch(Te)   1998

Field Reversed Configuration 1983-91

Spheromak 1989

Tandem Mirror 1989
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 “Reactor Plasma 

Conditions”

ST  1998

Performance Extension

Proof of Principle

Concept Exploration

Deuterium Plasmas

Reactor Plasma  Conditions
(Alpha Dominated)

Q ~ 1

Q ~ 0.01

Q ~ 0.00001

Q ~ 0.001

Q ~ 0.01

T-3
1965

T-3
1968

ST 2001

Stellarator  1999

ST  1999
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We are ready, but this step is our most challenging step yet.



NATIONAL FUSION FACILITY
S A N D I E G O

DIII–D 130–02/TST/wj

THE MAGNETIC FIELD IN A TOKAMAK
IS PRODUCED BY CURRENTS IN EXTERNAL COILS

PLUS A CURRENT IN THE PLASMA
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Core Plasma

Macroscopic 
Equilibium /Stability 

Core Plasma

Transport
(micro-scale stability)

Core Plasma

Heating ,Current Drive
and Particle Fueling

Edge Plasma

Power and Particle 
Handling

self - heating

self-driven current 

Fusion Plasmas are Complex Non-Linear Dynamic Systems

external current drive

external heating
ext. fueling
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Can a fusion dominated plasma be created and controlled in the laboratory?



FIRE will Emphasize Advanced Tokamak Goals

Burning Plasma Physics

Q   ~ 10 as target,    ignition not precluded

fα = Pα/Pheat   ~ 66% as target, up to 83% at Q = 25

TAE/EPM                  stable at nominal point, able to access unstable

Advanced Toroidal Physics

fbs = Ibs/Ip    ~ 80% (goal)

βN         ~ 4.0, n  = 1 wall stabilized

Pressure profile evolution and burn control > 10 τE

Alpha ash accumulation/pumping > several τHe

Plasma current profile evolution 2 to 5 τskin

Divertor pumping and heat removal several τdivertor 
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Quasi-stationary Burn Duration (use plasma time scales)
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The FIRE Design has Adopted ARIES-RS Plasma Features

FIRE Cross/Persp3-10/10/02

AT Features

• strong shaping
  κx, κa = 2.0, 1.85
  δx, δ95 = 0.7, 0.55

• segmented central
  solenoid
 
• double null
  double divertor pumped

• low ripple (<0.3%)

• internal control coils

• space for RWM
   stabilizers

• inside pellet
  injection

Vertical Feedback Coil

Passive Stabilizer Plates
space for RWM stabilizers

Direct and Guided Inside Pellet Injection

 2.14m 

dmeade
Alpha ash pumping on cryosorption panels (32)
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FIRE Engineering Features 

FIRE Cross/Persp3-10/10/02

Compression Ring

Wedged TF Coils (16), 15 plates/coil* pre-cooled to 80 K

Double Wall Vacuum
 Vessel   (316 S/S)

All PF and CS Coils*, 80K
OFHC C10200

Inner Leg BeCu C17510, 
 remainder OFHC C10200

Internal Shielding
( 60% steel & 40%water)

W-pin Outer Divertor Plate
Cu backing plate,actively cooled

 2.14m 

FIRE will push plasma facing components for the wall and 
divertor toward reactor power densities.

Be coated (5 mm) first wall
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Fusion Ignition Research Experiment
(FIRE)

Design Features
• R =   2.14 m,   a = 0.595 m
• B =     10 T    (~6.5 T AT)
• Wmag= 5.2 GJ
• Ip =     7.7 MA  (~5 MA AT) 
• Paux ≤ 20 MW
• Q ≈ 10,  Pfusion  ~ 150 MW
• Burn Time ≈ 20 s ( ~ 40 s AT)
• Tokamak Cost ≈ $350M (FY02)
• Total Project Co st ≈ $1.2B (FY02)

at Green Field site.

http://fire.pppl.gov

DMeade
 

DMeade
magnetically-confined fusion-dominated plasmas.

DMeade
Mission: Attain, explore, understand and optimize
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1,400 tonne
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Simulation of Conventional H-Mode in FIRE

• ITER98(y, 2) with H(y, 2) = 1.1, n(0)/〈n〉 = 1.2, and n/ nGW = 0.67
• Burn Time ≈ 20 s ≈ 21τE ≈ 4τHe ≈ 2τCR

Q = Pfusion/( Paux + Poh)

B = 10 T

Ip = 7.7 MA

R = 2.14 m

A = 3.6



FIRE Simulations
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FIRE Simulation
     Project
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Conventional Mode
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~ 70% self heating
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~20% self generated
  confining magnetic
   field
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       5.5 MW/m3
Fusion Power density
     (reactor level)

dmeade


dmeade
 • 2-D magnetics
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• 1-D transport
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• realistic geometry
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• time evolution



Existing
Data Base

Emerging Advanced
Toroidal Data Base

Burning
Plasma
Physics

Advanced Toroidal Physics (bootstrap fraction)

Alpha Dominated

fα = Pα /(Pα + Pext) > 0.5,  
τBurn > 15  τE,  2 - 3 τHe

Conventional Regime
Burning Plasma Physics

Burning Plasma Physics 
and

 Advanced Toroidal Physics

Advanced Burning 
Plasma Physics Pαααα

PHeat
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Staged Approach to Burning Plasma Operation
Conventional Mode then Advanced Mode.

0.0

High Beta & Long Pulse
Q equiv DT ~ 1 
 τpulse > 2 - 3  τskin

Advanced Tokamak
Regime

Large Bootstrap Fraction,

0.2 0.4 0.6 0.8 1.0

FIRE - Phase 1

FIRE - Phase 2

KSTAR, (JT-60 SC)

 

Attractive MFE 
Reactor

(ARIES Vision)
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FIRE would be part of an International Multi- Machine Program to develop attractive fusion power.



ITER and FIRE are Each Attractive Options (FESAC)
Primary  Burning Plasma Experiments (same scale)

ITER ($ 5B - 19 ktonne)

FIRE ($ 1.2B - 1.4 ktonne)

Conventional Operation

Q ~ 10  @ 86% J(r) equilibration
 (FIRE and ITER)

Advanced Operation

Q ~ 5, fbs ~ 80%, βN ~ 4 @ 98% equil.
(FIRE)

Q ~ 5, fbs ~ 50%, βN ~ 3 @ 99.9% equil.
(ITER)

A strategy that allows for the possibility of either burning plasma option is appropriate. (FESAC)




