MHD stability of high-β and long-pulse NSTX spherical torus plasmas

Presented by J.E. Menard, PPPL for the NSTX Research Team

April Meeting of the American Physical Society

Saturday, April 5, 2003
Washington B, Loews Philadelphia Hotel
Philadelphia, PA
How does low aspect ratio change stability?

- Primarily through safety factor “q”

 q is $\frac{\text{# toroidal transits}}{\text{# poloidal transits}}$ of a magnetic field-line on a magnetic surface

 - MHD instabilities try to satisfy $k \cdot B = 0$

 • Instability wave-vector $k = n\nabla\phi - m\nabla\theta$

 • Occurs on resonant rational $q = m/n$ surface

 • $n =$ toroidal mode number (integer)

 • $m =$ poloidal mode number (integer)

 - High q and shear in q profile stabilizing

 • Field-line bending energetically unfavorable

- Spherical torus ($A = R_0/a \leq 1.6$)

 $q_{\text{edge}} = 11$

- Tokamak ($A > 2.5$)

 $q_{\text{edge}} = 4$

- $q \propto (1+\kappa^2)\frac{aB_T}{I_P A}$

 - Higher q for given $I_P / a B_T$ at low A

 - Increased shear in q profile at low A
MHD stability improved at low A

- Efficient reactor needs high toroidal β
 $\beta = \text{kinetic pressure} / \text{magnetic pressure}$
 Generating toroidal field (TF) is costly

- Theory and experiment show
 - $\text{MAX}(\beta_T) \propto I_p / a B_T$
 - $\beta_N \equiv \beta_T(\%) a B_T / I_p(\text{MA}) \leq C \approx 3-6$

- β_N increases at low A
 - β_N up to 6 at low A
 - $\beta_N = 3-4$ in standard tokamak

- $I_p / a B_T \propto (1+\kappa^2) / A q$ \Rightarrow
 - Stable $I_p / a B_T$ increased at low A

Higher β_N and $I_p / a B_T$ at low A result in β_T up to 35%
Highest β_T discharges limited by $m/n=1/1$ modes

- $I_p=1\text{MA}, B_T=0.3\text{T}, P_{\text{NBI}}=5\text{MW}$
 - Both discharges terminate rapidly

- Before rapid termination….

 Sometimes, β rises throughout discharge
 Most times, β saturates, then drops

When $q(0)$ is near 1 and $\beta_T > 20\%$, 10-15kHz $n=1$ instability appears

$n=1$ mode larger in high β shot (!)

How is drop in β avoided?

Difference appears to be sustained rotation
Instability dynamics from non-linear simulations
(from Wonchull Park, M3D code, PPPL)

Simulation without rotation ⇒

B-field lines
Hot core
Cold island

With sufficient rotational flow and shear, reconnection can be interrupted
May explain long-lived 1/1 modes in high β_T NSTX discharges
Steady-state ST also requires high β_p

- Self-driven current fraction \(\propto \beta_p \equiv 2\mu_0\langle p \rangle / B_P^2 \)
- \(\beta_T \propto \beta_N^2 / \beta_P \Rightarrow \) Need very high \(\beta_N \) for steady state

\[2A\beta_t/(1+\kappa^2) \% \]

<table>
<thead>
<tr>
<th>β_P / A</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_N = 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$q^* = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001 data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002 data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NSTX $\beta_T = 40\%$ target
ST Reactor ($\kappa = 3.4$)
High β_T and β_N
High β_P and β_N
Want $q^* \approx 2.5$ at high $\beta_N > 8$
High β_p discharges limited by “bursting” n=1

β_p

Rapid n=1 bursts cause β drops
- β can recover between bursts

Mode B_θ
Gauss

Continuous modes degrade β?

$f_\phi(0)$
kHz

Each n=1 burst reduces rotation
- Also triggers continuous modes?

non-rotating n=1 δB_R

Non-rotating n=1 becomes unstable once rotation is low
- Causes final collapse of plasma β
High β_p shots operate above no-wall limit

Theory and other experiments (DIII-D):
\Rightarrow resistive wall and plasma rotation can stabilize “resistive wall mode”

NSTX high β_p shots may be hitting with-wall limit
Stability increases at low A

- Low A \Rightarrow high I_p / a B_T and β_N \Rightarrow high $\beta_T \leq 35\%$
 - High β_T discharges limited by *long-lived* $n=1$ modes

- High β_P and high β_N needed for steady-state ST
 - High β_P discharges limited by *bursting* $n=1$ modes

- Highest β_P discharges are above stability limits w/o wall
 - Rotational stabilization of resistive wall mode