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ARIES

• Advanced Reactor Innovation Evaluation Study
– ~ 10 year program to identify and begin evaluation of attractive

concepts for a Magnetic Fusion Energy (MFE) power plant
– Led by Profs. R. Conn and F. Najmabadi (UCLA/UCSD)
– Involved over 50 fusion scientists and engineers from about 15 

institutions…University, Laboratory, Private sector

• Documented 7+ tokamak power plant designs
year

ARIES-II/IV
Second stability

1990 1992 1994 1996 1998 2000

ARIES-I
First stability

PULSAR
Pulsed operation

ARIES-RS
Reversed Shear

ARIES-AT
Advanced P&T

ARIES-III
Advanced Fuels

ARIES-ST
Spherical Torus
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Philosophy of the ARIES Studies

A new technology (FUSION) can penetrate the market only if it is
significantly better than any existing technology (FISSION)

• Attractive Safety Features
– Eliminate “N-stamp” requirements  (extensive, expensive design certification)
– Low radioactive inventory  (no 3-mile island or Chernobyl)
– Minimal weapons proliferation and security costs

• Attractive Environmental Features
– Waste disposal advantages – “Class-C” shallow-land burial (no Yucca Mountain)

• The assumption is that if these advantages are factored into the “true 
cost”, then fusion will have an advantage over fission

– (Corollary is that the designs must be such as to keep these advantages)

• The physics and engineering assumptions used in the ARIES 
designs were sometimes very aggressive in order to get an attractive 
design:

– “Theoretically possible”, not necessarily “experimentally demonstrated”
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ARIES-I
First-Stability Regime, Steady State Plasma 

MHD Stable to kink modes without a Conducting Wall

• ARIES-I design was to have “present day”
physics (“first stability regime”), aggressive 
engineering, but keeping safety and 
environmental advantages

• Because RF current drive is relatively inefficient, 
the fraction of self-generated current (bootstrap 
current)  must be large…68% in ARIES-I

• The constraint of “first stability” and high 
bootstrap current leads to relatively low β = 1.9%, 
and modest normalized βN = 3.0, 

• Since fusion power ~ β2B4, this is compensated 
by high B  ( 21 T at coil, 11.3 T at plasma center)*

R=6.75 m, a = 1.5 m, 
BT = 11.3 T, IP = 10 MA

1 GW net power
*(Redesign, A-1’, has 16 T and 9 T)
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Engineering features of the ARIES-I design:

• Advanced superconductor Nb3Sn alloys toroidal field magnets 
producing 21 (16) T at magnet and 11.3 (9) T at plasma center

• ARIES-I blanket is He-cooled (at 10 MPa) design with SiC
composite structural material, and Li2ZrO3 solid tritium breeders 
with beryllium neutron-multiplier

– SiC composites are high strength, high temperature 
structural materials with very low activation and very low 
decay afterheat

• An advanced Rankine power conversion cycle as proposed for 
future coal-burning plants (49% gross efficiency).

• Folded wave-guide launcher made of SiC composite with 0.02 
mm Cu coating (for RF current drive)

• Fusion power core modular for easy maintenance using a 
vertical lift approach
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A-1’

Aspect Ratio 4.5 4.5 High A to decrease IP and divertor heat 
loads, and increase fBS,

Major Radius (m) 6.75 7.9

1.8

10

9

1.9%

2.0

1000

Required for power balance

Vertical Elongation κ 1.8 Minimizes PF energy, vertically stable

Plasma Current (MA) 10.2 Provides adequate confinement

Toroidal Field on Axis (T) 11.3 At limit of advanced alloy conductor

Toroidal beta 1.9% At first stability limit without wall

Neutron Wall load 
(MW/m2)

2.5 20-MWy/m2 lifetime

Fusion power (MW) 2564 97 MW ICRF CD power, 

Net electric power (MW) 1000 Same for all ARIES designs

Net plant efficiency 39% Advanced Rankine steam power cycle 
with 49% efficiency
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ARIES-I
First-Stability Regime, Steady State Plasma 

MHD Stable with no Conducting Wall

Troyon Limit: CT=3.0

or,                    

Bootstrap fraction:  CBS=0.5

it follow that   

Bootstrap alignment: Need to have q0 > 1 for IBS/IP > 0.5 to avoid 
local bootstrap overdrive.  This tends to lower CT

=> tradeoff between high β and high Bootstrap fraction
A=R/a=4.5,  IBS/IP=.68,  β=1.9%, q0=1.3
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Objectives of the PULSAR study

• Study the feasibility and potential features 
of a tokamak with a pulsed mode of 
plasma operation as a fusion power plant.

• Identify trade-offs which lead to the 
optimal regime of operation.

• Identify critical and high-leverage issues 
unique to a pulsed-plasma tokamak power 
plant.

• Compare steady-state and pulsed 
tokamak power plants. R=8.6 m, a = 2.15 m, 

BT = 7.5 T, IP = 15 MA

1 GW net power



PULSAR Plasma Regime of Operation
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• The loop voltage induced by the “inductive” current-drive 
system is constant across the plasma (stationary state):

– In this stationary state, plasma current-density profiles (induced and 
bootstrap) are determined by n and T profiles;

– Pressure profile is n x T

• Thus, Equilibrium is completely determined from n(ψ), T(ψ), IP
– No additional freedom to tailor the current profile to improve stability limits
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PULSAR Plasma Regime of Operation(2)
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• It follows that the current-

density profile cannot be 
tailored to achieve the highest 
possible β

– βN is limited to ≤ 3.0 (for most 
favorable profiles…broad)

– Bootstrap fraction is not large (∼30% 
to 40%, maximum)

– Second stability operation is not 
possible

• A large scan of stable ohmic
equilibrium was made and a fit 
to the data base was used in 
the systems analysis
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Power Flow in a Pulsed Tokamak
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• Utilities require a minimum electric output for the 
plant to stay on the grid

• Grid requires a slow rate of change in introducing 
electric power into the grid

• Large thermal power equipment such as pumps and 
heat exchangers cannot operate in a pulsed mode.  In 
particular, the rate of change of temperature in the 
steam generator is ~ 2oC/min in order to avoid boiling 
instability and induced stress.

Therefore, Steady Electric Output is Required and an 
Energy storage system is needed.



PULSAR Energy Storage System
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• An external energy storage system which uses 
the thermal inertia is inherently very large:

– During the burn, Tcoolant > Tstorage

– During the dwell, Tcoolant < Tstorage

– But the coolant temperature should not vary much.  
Therefore, thermal storage system should be very large

• PULSAR uses the outboard shield as the 
energy storage system and uses direct nuclear 
heating during the burn to store energy in the 
shield;

– This leads to a low cost energy storage system but the dwell 
time is limited to a few 100’s of seconds



Energy is accumulated in outer shield during burn phase, 
regulated by mass flow control during dwell phase
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shield blanket plasma compressor
Burn Phase

shield blanket plasma compressor

Dwell Phase



PULSAR cycle
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Fusion PowerτD

τB

time

PF-Coil Current Plasma Current

• Plasma physics sets lower limit on dwell time;
• upper limit set by thermal storage system.  

• Burn time determined through trade-off between size of 
OH system and number of cycles.

• COE insensitive to burn times between 1 and 4 Hrs 

τD ~ 200 sec

τB ~ 9000 sec



Pulsar Dwell Time Calculation

18 3/3/2005

ARIES
PULSAR

STARLITE

Current Rampup time 54 s

Plasma ignition time, 53 s

Plasma de-ignition time 38 s

Plasma shutdown time 54 s

Total Dwell time: 200 s

Burn time, 9000 s

Number of cycles 2,700 / year



PULSAR  magnet system
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• The PULSAR TF magnet system 

is similar to the old ITER design

• OH solenoid is located between 
the TF coil and the bucking 
cylinder

• Shear panels are used between 
the TF coils

• Inner legs of the TF coils are 
keyed together to support the 
shear loads

• Because of the elaborate key 
system, the supportable stress in 
the inner leg of the TF coils is 
reduced 

=> ~15% Lower Toroidal field 
strength than in ARIES I



Major Parameters of PULSAR
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Aspect Ratio 4.0 (4.5) Optimizes at slightly lower A since fBS

does not weigh as heavily

Major Radius (m) 8.5 7.9

1.8

10

9

1.9%

2.0

1000

Required for power balance

Vertical Elongation κ 1.8 Minimizes PF energy, vertically stable

Plasma Current (MA) 13 Provides adequate confinement

Toroidal Field on Axis (T) 6.7 Lower due to cyclic PF induced stresses

Toroidal beta 2.8% First stability limit without wall, lower  βP

Neutron Wall load 
(MW/m2)

1.3 20-MWy/m2 lifetime

Net electric power (MW) 1000 Same for all ARIES designs

A-1’
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PULSAR
ITER-like design with current driven by

OH-coils + Bootstrap current
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Troyon Limit: CT=3.0

Operate at higher IP (lower βP) to maximize β/ε

• However, no freedom in current profile…no non-inductive current drive

• Current profile J determined from T and n profiles by stationary 
constraint

• Using this constraint, stability boundaries can be mapped out

• Depend only on ε, q*, and density and temp. profile form factors

9000 s burn with 200 s OH recharge, during which thermal reservoir 
is tapped

A=R/a=4,  IBS/IP=.34,  β=2.8%, q0=0.8



Outline

22 3/3/2005

ARIES
PULSAR

STARLITE• Overview of the ARIES studies

• Description of ARIES-I

• Description of PULSAR

• Relation of ARIES-I and PULSAR to the other 
ARIES designs

• Comparison of ARIES-I and PULSAR

• Some of the lessons learned from the 
studies

• Summary and conclusions



23 3/3/2005

ARIES
PULSAR

STARLITE

Reactor Operating Modes

STEADY STATE

PULSED

2ND STABILITY 
REGIME-wall 
stabilization of 
kink modes

MODERATE β
MODERATE  βp

ARIES-I

HIGH β
HIGH βp

ARIES RS, AT, ST

HIGH β
LOW βp

PULSAR

NOT POSSIBLE

1ST STABILITY 
REGIME-wall 
stabilization not 
required
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Dimensionless Parameter Space 
β/ε x 2/(1+κ2)   vs ε βP

for Tokamak  Reactor Regimes

advanced 
tokamak 
regime

β/ε x 
2/(1+κ2)

ε βP

q*

ARIES-I

PULSAR

ARIES-AT

REVERSED SHEAR

ARIES-ST

DIII-D

PBX-M

TFTR,DIII-D
ITER

Bootstrap current 
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Both the AIRES-I and PULSAR operating modes have 
demonstrated stationary high performance on DIII-D

ARIES-I like PULSAR like

M Wade, June 2004
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Physics assumptions of  the two first stability devices are the 
same (except non-inductive current-drive physics).  

PULSAR ARIES-I’
Current-drive system PF system very expensive, but 

efficient, separate system for 
heating

Non-inductive drive
Expensive & inefficient, used 
also for heating

Recirculating power Low High due to RF

Optimum Plasma Regime Moderate Bootstrap, High A, 
Low I

High Bootstrap, Higher A, 
Lower I

Current Profile Control No,  30%-40% bootstrap 
fraction
βN~ 3, β ∼ 2.8%

Yes, 65-%-75% bootstrap 
fraction
βN~ 3.3, β ∼ 1.9%

Toroidal-field Strength Lower because of interaction 
with cycling PF   (B ~ 14 T on 
coil)

Higher (B ~ 16 T on coil) 

Power Density Low Medium

Size and Cost High (~ 9 m major radius) Medium (~ 8 m major radius)
Energy Storage Yes, Shield No need

Disruptions More frequent fewer
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Many Critical Issues and dependencies have 
been uncovered by the ARIES Studies

MHD Regime:
• tradeoff β for IBS/IP  (and alignment) and hence circulating power
• operate at 90% of β-limit to reduce disruption frequency
• severe constraints on close-fitting shell and n>0 feedback
• effect of ohmic-profiles on stable β in non-CD machine

– has implications for ITER

Plasma Shaping:
• plasma elongation limited by control-coil power and location
• plasma triangularity restricted by divertor geometry

Current Drive:
• need for efficient off-axis CD (other than LHCD)
• CD frequency also important for wall-plug efficiency
• minimize coverage of RF launchers to avoid affecting tritium breeding

Divertors:
• radiated power needed to reduce power to divertor
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Summary
• Both the ARIES-I and PULSAR designs are very close to the 

achieved physics data base
• Both steady-state and pulsed power plants tend to optimize at 

larger aspect ratio and low currents
• Even though the plasma  β is larger in a pulsed tokamak, the 

fusion power density (wall loading,etc) would be lower because 
the magnetic field at the coil would be lower

• A major innovation of the PULSAR study is the low-cost thermal 
storage system using the outboard shield

• The magnet system and fusion power core are much more 
complex in a pulsed-plasma tokamak, but there is no CD system

• Assuming the same availability and unit costs, PULSAR is about 
25% more expensive than a comparable ARIES-I class device

• These designs provide an important backup if the more 
aggressive “Advanced Tokamak” designs prove impractical
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AST 558: Graduate Seminar - "Prospects for Fusion Energy"

February 7 A Brief History of Fusion and Magnetic Fusion Basics - Meade

February 14 Recent JET Experiments and Science Issues - Strachan

February 21 Advanced Tokamaks FIRE to ARIES - Meade

February 28 The ARIES Power Plant Studies – Jardin

March 7 IFE basics and NIF - Mark Herrmann(LLNL)

Midterms and Spring Break

March 21 The FESAC Fusion Energy Plan - Goldston

March 28 Fusion with High Power Lasers – Sethian(NRL)

April 4 ITER Physics and Technology- Sauthoff

April 11 Stellarator Physics and Technology - Zarnstorff

April 18 “New” Mirror Approaches for Fusion - Fisch

April 25 ST Science and Technology – Peng 

May 2 FRC Science and Technology - Cohen
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Lesson # 1:
It’s β/ε (i.e. βR0/a) that’s important, not β !

MHD Theory

0
0.02
0.04
0.06
0.08

0.1
0.12

0.15 0.2 0.25 0.3

SC Reactors

shieldTF coil Plasma

C
L

R0
R0- 3a/2

a

BT = µ0ITF/2πR
is limited by it’s 
value at the edge 
of the TF coil,      
R ~ R0- 3a/2

ε = a/R

ε BT
2

Almost 
independent of ε
for BT at the TF 
coil held fixed

MHD Figure 
of merit

1.  Large aspect ratio expansion 
of MHD perturbed energy δW
shows that β enters only as β/ε
(reduced MHD)

2. Troyon scaling may be 
written in dimensionless form 
as:

β/ε < CTS/(20q*)
Here , the right hand side is 
independent of ε. CT = 3.5 is 
the Troyon coefficient, q* > 2 is 
the cylindrical safety factor, and 
S=(1+κ2)/2 is the shape factor.

R

BT

Power Density:

P ~ β2BT
4

= (β/ε)2(εBT
2)2
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Lesson # 2:
Non-Inductive current drive is very costly !

ICD = γCD (PCD/neR)

ICD = Total non-inductively driven current (A)
PCD = Power to plasma by CD system (W)
ne = average density (in units of 1020/m3)
R = major radius (m)
γCD = CD figure of merit

• Theoretical calculations show γCD α Te
n with  0.6 < n < 0.8

• Highest values to date for γCD are 0.45 (JET with ICRF+LH) 
and 0.34 (JT-60 with LHCD).  Note that for a Reactor with 
IP=20 MA, ne = 1.5 x 1020, R = 8 m, γCD = 0.34, this gives

PCD = 700 MW to the plasma.
• This is unrealistic for a 1000 MW Power plant, since wall 

plug power is much higher (several efficiencies involved)
most of the plasma current must be self-generated 
(bootstrap) for a non-inductive reactor
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