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High Field Side (HFS 45°) Pellet Injection on DIII-D
Yields Deeper Particle Deposition than LFS Injection
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Fueling
Efficiency:

• Net deposition is much deeper for HFS pellet in spite of the lower velocity

• Pellets injected into the same discharge and conditions

– ELMing H-mode, 4.5 MW NBI, Te(0) = 3 keV
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The Difference Between Ablation and Net Deposition
Profiles Indicates Major Radius Drift of Ablatant
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• The net deposition profile is consistent with a major radius drift from the
calculated ablation profile
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HFS Pellet Injection on DIII-D Yields Deeper
Particle Deposition than Predicted by Ablation Model
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• HFS and vertical injection show deeper than expected deposition of pellet
mass from simple ablation model

• LFS pellet maximum deposition depth agrees with simple model

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

LFS
V+1
HFS 45
HFS mid

Magnetic
Axis

Edge Calculated Maximum (λ/a)
Deposition Depth

LFS

HFS



SLM 2/29/2000

WAH 1 May 2001 5WAH 1 May 2001 5

Locally Applied Global Confinement ModelLocally Applied Global Confinement ModelLocally Applied Global Confinement Model

• Neoclassical plus anomalous transport
• Fixedanomalous conductivity and diffusivity profiles:

– Normalized to yield global L-mode confinement (ITER-97L):
ττττE97L(s) = 0.023 I0.96 Bt0.03 P-0.73 n190.40 M0.2 R1.83 εεεε-0.06 κκκκ0.64

where I is the plasma current in MA, Bt is the toroidal field in T, P is
the heating power in MW, n19 is the electron density in 1019 m-3, M is
average ion mass in AMU, R is the major radius in m, εεεε = a/R is the
inverse aspect ratio, and κκκκ is the plasma elongation

S.M. Kaye and the ITER Confinement Database Working Group, Nucl. Fusion 37, 1303 (1997)

– Profile: χχχχιιιι(ρρρρ) = χχχχe(ρρρρ) = χχχχ(0)[1+4ρρρρ2] , D(ρρρρ) = χχχχ(ρρρρ)/2
– Ion Temperature Gradient (ITG) transport would show a richer profile
variation due to dependence on temperature and density gradients

• D, T and He recycle:
– 90% of outgoing flux recycled inside separatrix
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L-H Transition ModelLL--H Transition ModelH Transition Model

• L-H transition power threshold (IPB98-4):
Pthr(MW) = 0.082 n200.69 Bt0.91 S0.96 M-1

where n20 is the electron density in 1020 m-3, Bt is the toroidal field in
T, S is the surface area at the separatrix in m-3, and M is average ion
mass in AMU

ITER Physics Basis, Nucl. Fusion 39, 2175 (1999)

• Suppress edge transport when power across separatrix exceeds
the threshold, Psep > Pthr :
– By a factor of 5 for 0.95 < ρρρρ < 1.0
– ELM effects are lumped into the suppression factor
– Generally this gives an H-factor ~ 2
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Alpha, Auxiliary Heating and Fueling ModelsAlpha, Auxiliary Heating and Fueling ModelsAlpha, Auxiliary Heating and Fueling Models

• Inside pellet launch:
– Assume uniform ∆∆∆∆n profile
– Similar to DIII-D observations
L.R. Baylor, et al., (Proc. 18th Int. Conf., Sorrento, 2000) IAEA, Vienna

• Fast wave ICRF:
– Empirical match to strong and weak absorption limits
W.A. Houlberg, S.E. Attenberger, Fusion Technol., 26, 566 (1994)

– Ehst-Karney current drive
D.A. Ehst, C.F.F. Karney, Nucl. Fusion, 31 1933 (1991)

Fusion alphas:
– Multi-group time-dependent classical thermalization
S.E. Attenberger, W.A. Houlberg, Nucl. Technol./Fusion, 4, 129 (1983)
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Fusion Ignition Research Experiment ParametersFusion Ignition Research Experiment ParametersFusion Ignition Research Experiment Parameters

High field copper machine for burning plasma studies:

Major radius R0 = 2 m
Minor radius a0 = 0.525 m
Toroidal field Bt = 10 T
Toroidal current I = 6.44 MA
Elongation κκκκ = 1.8
Triangularity δδδδ = 0.4

D.M. Meade, et al., (Proc. 18th Int. Conf., Sorrento, 2000) IAEA, Vienna
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L-H Transition During Rampup
FIRE H-Mode Case

LL--H Transition DuringH Transition During RampupRampup
FIRE HFIRE H--Mode CaseMode Case

• The fast wave power is ramped
up during the current rise phase
and held constant at 15 MW from
4-27 s for a high-Q fusion burn

• The Psep > Pthr at ~4 s and stays
at or above the threshold until
the ramp-down phase

• Small oscillations in the fusion
power are responses to the fuel
pellets

• The fast wave power and/or
density can be reduced for lower
fusion power studies
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Low Startup Density Facilitates L-H Transition
FIRE H-Mode Case

Low Startup Density Facilitates LLow Startup Density Facilitates L--H TransitionH Transition
FIRE HFIRE H--Mode CaseMode Case

• The low startup plasma density
facilitates the L-H transition

• Density ramp keeps Psep > Pthr
• The density oscillations are due to
pellet perturbations

• Operation is well below the
Greenwald density limit
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Density Profile Peaking is ~1.2
FIRE H-Mode Case

Density Profile Peaking is ~1.2Density Profile Peaking is ~1.2
FIRE HFIRE H--Mode CaseMode Case

• The plasma profile peaking
factors show a wide variation
during the different phases

• The density profile:
– Peaks strongly during the startup
phase when direct penetration of
the pellets is deep

– Is moderately peaked (~1.2)
during the burn

• The temperature profiles:
– Peak early in response to the fast
wave heating

– Broaden during the density rise
– Peak in response to the central
alpha heating
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Persistent Reversed Magnetic Shear
FIRE H-Mode Case

Persistent Reversed Magnetic ShearPersistent Reversed Magnetic Shear
FIRE HFIRE H--Mode CaseMode Case

• The current ramp generates
moderate reversed magnetic
shear

• The bootstrap current drives a
strong shear reversal over the
inner half of the plasma radius
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Strong Fusion Sawtooth Oscillations
FIRE L-Mode Case

Strong FusionStrong Fusion SawtoothSawtooth OscillationsOscillations
FIRE LFIRE L--Mode CaseMode Case

• The confinement is assumed to
stay in L-Mode for the entire
simulation

• During the burn Psep < Pthr
• The lower operating temperature
yields lower bootstrap current
and faster current penetation,
which leads to sawtooth activity
beginning at ~12.5 s

• The amplitude of power
fluctuations from sawtooth
activity is much stronger than
that from pellets
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Stronger Density Peaking
FIRE L-Mode Case

Stronger Density PeakingStronger Density Peaking
FIRE LFIRE L--Mode CaseMode Case

• L-mode operation leads to
stronger density peaking (~1.7)
even in the presence of sawtooth
activity because of the lower
particle confinement and
increased rep rate for pellet
fueling

• Density peaking in L-mode
improves the fusion rate over flat
densities from gas fueling

• Axial temperature fluctuations
are very large from sawtooth
activity

Time (s)

0 5 10 15 20 25 30 35

P
ea

ki
ng

 F
ac

to
rs

 (-
)

0

1

2

3

4

5

FIRE L-Mode Case

ne(0)/<ne>

Ti(0)/<Ti>

nHe(0)/<nHe>

Te(0)/<Te>



SLM 2/29/2000

WAH 1 May 2001 15WAH 1 May 2001 15

SummarySummarySummary

• Flexibility in the Bt, I, n, and Paux and fueling rates during rampup
can be used to:
– Reduce the L-H transition threshold
– Access a range of reversed magnetic shear conditions

• Inside launch pellet injection:
– Yields moderate peaking in H-mode plasmas (~1.2) because of the
good particle confinement and weak refueling requirements

– Yields stronger peaking in L-mode plasmas (>1.5) to give an extra
margin for performance

– Should generate much smaller oscillations than sawtooth activity
– May enhance ITBs (not included in these studies)

• Reversed magnetic shear conditions:
– Can be initiated by tailoring startup
– Are enhanced by bootstrap current in high confinement plasmas


