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OverviewOverviewOverview

• Pellet enhanced performance internal transport barriers (PEP ITB)
are formed with pellets injected from the high field side (HFS)
followed by central heating:
– Ti ~ Te and strong negative central shear
– Reduced particle and both ion and electron energy transport is
observed

– The radial structures (e.g., profiles, radial electric field, transport
properties) exhibit stronger variation than standard ITBs due to
enhancement of the pressure gradients

• HFS (and sometimes LFS) pellets can trigger L to H-mode
transitions:
– Reduced power threshold
– Plasma parameters are well below the standard data
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HFS Pellets During Current Rise Lead to
Internal Transport Barrier - PEP ITB

HFS Pellets During Current Rise Lead toHFS Pellets During Current Rise Lead to
Internal Transport BarrierInternal Transport Barrier -- PEP ITBPEP ITB
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• HFS 2.7mm pellets injected during the current rise produce highly
peaked density profiles that develop a PEP ITB with Ti ≈ ≈ ≈ ≈ Te

• PEP ITB survives the L-H transition and can persist for > 1s
• Core collapse occurs as qmin reaches ~1.5
• Steepest ne, Te, Ti gradients occur inside qmin
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Strong Off-Axis Bootstrap Current Drives
Negative Central Shear in PEP ITB

Strong OffStrong Off--Axis Bootstrap Current DrivesAxis Bootstrap Current Drives
Negative Central Shear in PEP ITBNegative Central Shear in PEP ITB
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• The bootstrap current shows a stronger off-axis contribution in the PEP
ITB case

• The safety factor (q) profile determined from MSE data has stronger
negative central shear in the PEP ITB case

• The larger bootstrap current is a consequence of the stronger density
and pressure gradients from pellet injection
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Core Thermal Diffusivity Approaches Neoclassical
in PEP ITB

Core Thermal Diffusivity Approaches NeoclassicalCore Thermal Diffusivity Approaches Neoclassical
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• TRANSP calculations of χχχχi and χχχχe show stronger suppression of
transport inside the ITB of the PEP case (0 < ρρρρ < 0.4)

• Neoclassical χχχχιιιι is approached inside the ITB of both PEP and non-PEP
cases

• ωωωωEXB is large enough to suppress ITG turbulence in both PEP ITB and
non-PEP ITB plasmas
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PEP ITB has Lower Electron Particle Diffusivity
in the Core than non-PEP ITB

PEP ITB has Lower Electron Particle DiffusivityPEP ITB has Lower Electron Particle Diffusivity
in the Core than nonin the Core than non--PEP ITBPEP ITB

• TRANSP calculation of the
electron particle diffusivity shows
reduced particle transport in PEP
ITB just inside the barrier region
(ρρρρ < 0.4) relative to a non-PEP ITB

• Both PEP and non-PEP ITBs
show a strong increase in particle
diffusivity toward the axis as
inferred from the flat density
profiles
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Co-NBI PEP ITB Exhibits the Neoclassical Toroidal
Rotation Notch

CoCo--NBI PEP ITB Exhibits the Neoclassical ToroidalNBI PEP ITB Exhibits the Neoclassical Toroidal
Rotation NotchRotation Notch

• Toroidal carbon rotation in PEP
ITB shows a “notch” with co-NBI

• Similar to that seen on TFTR
supershots due to neoclassical
parallel momentum exchange (see
D.R. Ernst, et al. Phys. Plasmas 5 (1998)
665 for explanation of notch)

• NCLASS calculated deuterium
rotation profile is monotonic

• Experiments have been
performed on D-IIID (but not yet
analyzed) to directly validate the
relative toroidal rotation velocity
of ion species
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The Radial Electric Field has a Well at the PEP ITB
Location that is Deeper for Counter-NBI

The Radial Electric Field has a Well at the PEP ITBThe Radial Electric Field has a Well at the PEP ITB
Location that is Deeper for CounterLocation that is Deeper for Counter--NBINBI
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• Radial force balance calculation for carbon shows Er has well at
the notch location

• Toroidal rotation is the dominant term: Er = (Zen)-1 ∇∇∇∇ P + vφφφφBθθθθ - vθθθθBφφφφ
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ITG Modes are Stabilized inside the PEP ITBITG Modes are Stabilized inside the PEP ITBITG Modes are Stabilized inside the PEP ITB

• The ExB shearing rate exceeds
the ITG growth rate inside the ITB

• The shearing rate is also strong
in the H-mode barrier
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HFS Pellets Have Induced H-mode TransitionsHFS Pellets Have Induced HHFS Pellets Have Induced H--mode Transitionsmode Transitions

• HFS pellet induces an H-mode
transition that is maintained

• The H-mode power threshold is
reduced by 2.4MW (up to 33%)
using pellet injection
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Pellet Induced H-mode Transition
Occurs at Lower Edge Temperature
Pellet Induced HPellet Induced H--mode Transitionmode Transition
Occurs at Lower Edge TemperatureOccurs at Lower Edge Temperature
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• This LFS case was the consequence of a broken pellet

• The pellet induced H–mode transitions contradict critical edge
temperature models (edge Te and Ti are reduced following pellets)

• Pellet induced H–modes have L-H transitions at plasma parameters far
below the standard data
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SummarySummarySummary

• Pellet injection modifies ITB physics:
– Through modification of the density profile and as a consequence to
the pressure, Er, ωωωωExB, and other profiles

– Both the transition threshold and post transition characteristics are
modified

– HFS and vertical launch enhance the flexibility for modifying the ITB
behavior

• These enhancements may have similar underlying physics to the
enhancements seen in L-mode plasmas

• Any device examining burn dynamics can take advantage of this
enhanced flexibility by allowing vertical or inside access for
pellet injection


