Progress on Advanced Tokamak Scenario Modeling for FIRE

C. Kessel, PPPL (with help from D. Ignat and T.K. Mau)

2nd UFA Workshop on Burning Plasmas San Diego, May 1-3, 2001 Advanced Tokamak Development is Viewed as a Sequence of Improvements*

*includes simultaneous plasma edge/SOL/divertor improvements

Access to Higher β AT Plasmas

Quasi-Stationary AT Burning Plasmas are the Primary Focus

- The safety factor is held by non-inductive current
 - Bootstrap current
 - LHCD off-axis (other possibilities are NBI and HHFW)
 - ICRF/FW on axis
- Pulse lengths 3-5 x τ_{jdiff} (30-50 s)
- Q=5
- 1.0 < H(y,2) < 1.8

transient burning AT plasmas can be produced with inductive current

long pulse DD (non-burning) plasmas can be created with pulse lengths up to >200 s at Bt=4 T, Ip=2 MA

FIRE Can Access Various Pulse Lengths by Varying BT

Note: FIRE is \approx the same physical size as TPX and KSTAR. At Q = 10 parameters, typical skin time in FIRE is 13 s and is 200 s in ITER-FEAT.

Ideal MHD Stability Identifies Attractive AT Plasmas

- No n=1 stabilization
 - $\ q_{\text{min}} = 2.1\text{-}2.2$
 - $-2.5 < \beta_{\rm N} < 3.0$
 - $\ 0.5 < r/a(q_{\rm min}) < 0.8$
 - $3.3 < I_{\rm p}(MA) < 5.5$
 - $\ 0.3 < f_{\rm bs} < 0.5$

- With n=1 stabilization --> strong benefit
 - $q_{min} = 2.1-2.2$
 - $-3.4 < \beta_{\rm N} < 3.6$
 - $-0.5 < r/a(q_{min}) < 0.8$
 - $-3.3 < I_p(MA) < 5.5$
 - $\ 0.5 < f_{\rm bs} < 0.75$

*plasmas with $q_{min} = 1.3-1.4$ also identified, but these have (3,2) and (2,1) NTMs, and no improvement in β_N when n=1 is stabilized

**pockets of n=1 stability at q_{min} just above integer values are found, although the depth of the pocket is unclear

FIRE AT Modes; Bt=8.5 T, A=3.8, κ=1.9, δ=0.65						
n(0)/ <n>=1.5; * balloon limited; n=1,2,3 checked for n=1 stabilized</n>						
qmin=2.1-2.2		n=1 stabilized	lower of 4*li or 1.15*βN			
r/a(qmin)=.50 q*=4.15 ßn=2.37	Ip= 3.25 β N= 3.0 qmin= 2.16 Ii(3)= 0.68	βN=3.4	βN=3.45			
PP-2.57	li(1)=0.88 fbs=0.62	fbs=0.65	fbs=0.65			
r/a(qmin)=.65 q*=2.88 βp=1.55	Ip=4.71 β N=2.8 qmin=2.13 li(3)=0.54	βN=3.45*	βN=2.8			
	fbs=0.52	fbs=0.63	fbs=0.52			
r/a(qmin)=.80 q*=2.48 βp=1.18	Ip=5.45 β N=2.5 qmin=2.20 li(3)=0.45 li(1)=0.58	βN=3.60	βN=2.32			
	fbs=0.54	fbs=0.75	fbs=0.50			

FIRE AT Modes; Bt=8.5 T, A=3.8, κ=1.9, δ=0.65

n(0)/<n>=1.5; * balloon limited; n=1,2,3 checked for n=1 stabilized

qmin=1.3-1.4		n=1 stabilized	lower of 4*li or 1.15*βN
r/a(qmin)=.50	Ip=5.02		
	βN=3.55	βN=3.55	βN=3.68
q*=2.69	qmin=1.37		
βp=1.89	li(3)=0.71		
	li(1)=0.92		
	fbs=0.50	fbs=0.50	fbs=0.52
r/a(qmin)=.65	Ip=5.85		
-	$\bar{\beta}N=3.15$	βN=3.15	βN=3.44
q*=2.32	qmin=1.37		•
βp=1.38	li(3)=0.67		
	li(1)=0.86		
	fbs=0.38	fbs=0.38	fbs=0.42

Benefit of n=1 RWM Stabilization

 $q_{min} = 2.1$, $r/a(q_{min}) = 0.8$, $I_p = 5.3$ MA, $B_T = 8.5$ T, R/a = 3.8, (5,2) and (3,1) NTM's, allows wider range for value of q_{min} , $n(0)/\langle n \rangle = 1.4-1.5$

LHCD shape and location modeled from ray-tracing calculations

Bootstrap Current and the q Profile

Both cases have $q_{min}=2.1-2.2$, stable up to $\beta_N=2.85$, r/a(q_{min}) = 0.65, same n profiles n(0)/<n>=1.45, fbs=0.6

- Bootstrap current profile determined by n, T profiles--> q
- There are points with fixed f_{bs} as a function of β_N and $n(0)/\langle n \rangle$
- At what fbs do we need to control n and T profiles?

External Current Drive and Heating for FIRE

• 30 MW ICRF (ion heating) for ELMy Hmode;

– 4 ports, 100-150 MHz

- <10 MW ICRF/FW (electron heating/CD) for AT mode;
 - 1 (or 2) ports, 90-110
 MHz??, phasable
 - Want to use same ICRF equipment

- 20-30 MW LHCD (electron heating/CD) for AT mode;
 - 2-3 ports, 5.6 GHz, n∥ =2.0-2.5
 - For NTM control
- ?? MW ECH/ECCD (electron heating/CD) for startup and NTM control (issue is high B_T and high density)

Lower Hybrid for Off-Axis Current Drive on FIRE

LSC lower hybrid ray tracing calculation

 $P_{\text{LH}} = 30 \ MW$

 $I_{\text{LH}} = 2.4 \text{ MA}$

 $N \parallel = 2.0, \, \Delta N \parallel = 0.3$

 $I_{\text{BS}} = 2.6 \text{ MA}$

*alpha particle absorption of LH power? -- ripple loss of alphas may mitigate this

External Current Drive and Heating for FIRE (other possibilities)

- 120 keV NBI (positive HHFW (300-800 ion); deposition to ρ >0.7; good off-axis current profile and rotation
 - MHz); deeper penetration than LH

```
CD analysis by T.K.Mau for
ARIES-AT
```


Dynamic Burning AT Simulations with TSC-LSC for FIRE

Dynamic Burning AT Simulations with TSC-LSC for FIRE

Plasma becomes quasi-stationary after 10 s

Conclusions

- q_{min} around 2.1-2.2 is found to provide a good combination of
 - Beta limit with and without n=1 stabilization--increase these
 - High plasma current--not too high
 - Elimination of (3,2) and (2,1) NTM's--but (5,2) and (3,1) exist
 - Lower CD power --need to reduce this
- Less than 2 MA of LHCD is required, leading to powers of 20-30 MW from LSC lower hybrid calculations
- Stabilization of n=1 RWM would yeild attractive configuratons
- Need to find techniques for density profile peaking to enhance bootstrap current
- TSC-LSC simulations indicate that we can create quasistationary plasmas for flattop burn

Future Work for FIRE Burning AT Plasma Development

- Continue ideal MHD stability search
 - Pressure profile and q* variations
 - Edge profile effects
 - n=1 stabilized plasmas
- NTM requirements
- Examine DIII-D AT experiments
- Examine C-Mod AT experiments

- CD analysis
 - Reduce $P_{CD,}$ raise f_{bs}
 - LHCD, HHFW, NBI
 - ICRF/FW
 - ECCD
- TSC-LSC dynamic discharge simulations
 - Plasma formation in shortest time
 - Energy and particle transport models
 - Control of j, n, T

Experimental AT Observations to Guide FIRE AT Development

- DIII-D
 - NBI strong rotation source
 - ITB/turbulence
 suppression--->profiles
 - Edge plasma
 conditions/pumped
 divertor
 - n=1 RWM feedback
 - NTM stabilization

- C-Mod
 - Anomalous ICRF rotation
 - ITB/turbulence
 suppression--->profiles
 - LHCD/current profile control
 - High density core/edge
 - Detached divertor

The differences between the devices are likely to be the most important

Burning AT Plasma Issues

- Ripple losses are larger due to high q, low I_p and low B_T
- Alfven eigenmodes are expected to be more severe
- NTM suppression
 LHCD and/or ECCD
- RWM stabilization
 - n=1 feedback
 - Then what for n>1 RWM's
- Impurities for control

- T,n profile control
 - Density peaking vs β_N for bootstrap current
 - ITB relaxation, or turbulence suppression without ITB
- Plasma rotation
 - Bulk rotation for RWM stability
 - Sheared rotation for turbulence suppression
- Plasma edge conditions
 - L-mode or H-mode
 - Radiation characteristics

