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/ Many of fusion’s problems invol@
plasma wall interactions

N Cheaper electricity means higher power
density and therefore more power to
walls.

N Disruptions (unplanned and planned)
severely limit lifetime and therefore
desirabillity.
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NC ARIES-RS Design Module

/ COE OF NORMAL CONDUCTING COIL TOKAMAK REACTORS (1999) \
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/ SC ARIES-RS Desien Module \
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Lithium on surfaces could solve these \
problems and have other benefits

1 Flowing liquid plasma-facing systems can
rapidly remove heat.

1 Continuous recovery of damaged surfaces
exposed to large heat fluxes due to off-normal
events as well as disruptions.

"N TFTR Li pellet and DOLLOP experiments

1 Possible stabilization of MHD modes by
substituting a moving conducting wall for
plasma rotation
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L1 conditioning
improved overall
DT fusion power.

TFTR record fusion
power shot was
designed using
precise Li
conditioning.

Use of less Li at
higher power was
because of MHD

high-beta disruption
limits in TFTR.

o

TFTR Results: L1 conditioning

Li == Enhanced D-T Fusion Power

D-T Fusion Power
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All 3 factors of
the fusion triple

product were
enhanced by L1
conditioning
(involving only
few milligrams
of L1)
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TFTR Results
/ DOLLOP: Li Aerosol Controls Influxes and Increases '4’1_‘"'.'.!-_\

- Performance - Nonperturbing and Controllable -
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/ TFTR DOLLOP Results \
4PPPL DOLLOP Has Led to Enhanced and Sustained

Performance with No Harmful Effects
Three TFTR
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/ Disruptions set severe limits on\
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\G. Federici, et al. J. Nucl. Mater. 290-293 (2001) 260.
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Net erosion of ITER divertor

Case Peak net erosion rate (c/burn-yr)  Tntium codeposition rate® (g T71000 s pulse}

1. Refterence” 49 14
2. No fast-molecule chemical sputtering 49 13
3. ¥Foo=0.01 49 24
4. No chemical sputtering (physical sputtering ouly) g 2

5. Carbon erosion reduced due to beryllivm (from wall) mixing 47 1
6.  Beryllium divertor coating® 36 2

7. Tungsten divertor coating <0.1 ~0
R. ‘Shallow detached” plasma [13] 23 17

“lotal (inner + outer divertor) resulting from vertical target sputtering.
“Reference: carbon coating, Case 98-semi-detached plasma, physical and chemical sputtering, non-thermsl DT molecule sputtering yield ¥ e = 0.001.
“With TPE H/Be trapping ratio data [9].

J. Brooks, D. Alman, G. Federici, D.N. Ruzic and D.G. Whyte
J. Nucl. Mater. 266-269 (1999) 58.
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/ ELMs set power limit even for W \
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/ Plasma Facing Component Science and\
Technology Program

® Integrated concepts
® Lab-scale investigations
® Modeling efforts

® Near-term experiments
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APE EVOLVE FLOW/TEMPERATURE SCHEMATIC

With Multiple Natural Convection
lﬂr%mim Heat Hmmlm
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/ Flowing lithium droplet divertor \
cassette

R.F. Mattas, “ALPS — advanced limiter-divertor plasma-facing systems”” v, |
Fusion Engineering and Design 49-50 (2000) 127-134 PLAS% ", 5%
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CL1FF

(Convective Liquid
Flow First-Wall)

Fast Flowing
Firsi Wall

- Conceptual sector schematic of
CLi1FF implementation in ARIES-RS
reactor

N. Morley, et al. APEX Interim Report, UCLA-ENG-99-206, Nov 1999
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/ CL1FF — Flow/Temperature Schematic \

534

Shield / Blanket Supply

Inboard

Blanket / Shield Return
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/ LiWalls and plasma energy confinement \

Li is an excellent getter for the hydrogen plasma particles.

Li covered walls

Conventional
walls

Wall , ENERGY FLUX :
ERMO-CONDUCTION

nergy flux: iR
convection
Particie oulfiux
Il Li source 5l particle source + gas puff

purfes & = L ol Li)

article outflux
esidual wall particle source

Lithium can be propelled along the walls
for power and particle extraction.

g_& Leanid E, Zakharoy, PPPL Theory sevminar, PLL Jan, 18, 2001, Princelon NJ
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6 LiWalls and plasma energy confinement (cont.)

Improved energy confinement is extremely for igniting the plasma

npr-Tpr-TE>5x 10" m™™ - keV -8, npr-Tpr-Te X T¢

Plasma profiles are determined by the particle continuity equation

I'= Snv = const = (I'),
and by the energy balance

—l T — S(krVT + 6,Vn) = [ Prdv

With perfectly absorbing walls plasma does not know the temperature
of the (cold) walls and leaves no room for thermo-conduction

(;r]") — I|||’]” Pt-dr.'._ Tr_dw_ a Ly Prduv
r'r|'5|r'

T Pr— heat source.

Thus, the major energy loss channel, i.e., thermo-
conduction, can be eliminated with this absorbing wall

boundary condition (S. Krasheninnikov, PFSC at MIT, now |
at UCSD). a4
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[TAX (Ion-surface InterAction eXperiment)\
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/ In-situ cleaving arm design and HV\

1 Cleaving arm is heater TC
designed to remove
thin oxide layer
formed on Li layer of
liquid tin-lithium or
liquid lithium sample

1 Surface composition
experiments show
that Li segregates to

the liquid Sn-Li
surface’
A HYV heater was installed inside
a BN cup. |
; PLASKE .,
&B. Bastasz J. Nuclear Mater. 290-293 (2001) 19. *TER[IAL
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E

econdary 1on fraction and deuterium- \
saturation studies of liquid metals in

[TAX at GRUC
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N Saturation of solid and liquid (T/Tm ~ 1) tin-lithium with D atoms
results in no effect on the absolute sputtering yield of lithium.

N lon fraction measurements show that 55-65% of sputtered atoms
\from D-saturated solid and liquid lithium are in an ionized state.
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~ ITAX experimental and modeling data on

N D treated
lithium yields
are well below
unity

N Data taken at
45 degqg.
Incidence and
200 C surface
temperature

-

liquad lithtum erosion

~
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J.P. Allain, M.R. Hendricks and D.N. Ruzic, J. Nucl. Mater. 290-293 (2001) 180
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/ Eftect of deuterium surface treatment\

on lithium erosion

3

' I
= He on non D-sat Li /E/E/E :
= He on D-sat Li E/E
= He on D-sat Li (neutrals only)
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Allain and D.N. Ruzic, Nucl Fusion, submitted 2000
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4 FLIRE concept I
penetration
depth
ion gu% N
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" FLIRE will provide
fundamental data on
the retention and
pumping of He, H,
and other gases In
flowing liquid
surfaces.

o

Figure 2

Lom

ﬂ: LIRE (Flowing Liquid Surface Illinois\
Retention Experiment)
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/ PMI Experimental efforts in ALPS

~
Upon melting, Li segregates to the alloy surface
1000 eV He™ —= Sn(0.25 mm) — L0 10 mm) — SA0.25 mm)
first heating:  below and above melting point
Theta = 45,00 dig  Alpha = 67,5 deg Temp = 150, 300 C
SMHL CA : ARIES lon Energy Spectrum Files: hdOFF7F, hal7 &0
T Sn
|
3 O
300 °C
s 2
Counis
150 °C
1
0
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/ PISCES — glowing lithium \

Deuterium plasma interacting with solid lithium

TRIM.SP prediction

01 |
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K R. Doerner, et. al., J. Nucl. Mater. 290-293 (2001) 166.

IN'I'ERACTION GROUP

Uriiversity of lllinagis at Urbana-Champaign




,

Li I Light from DiMES
during PF exposure

Li I Energy Level
Diagram

\

460 nm

18

671 nm

oL

" Lithium is sputtered in private flux (PF) plasma

by charge-exchange neutrals

N Neutral lithium resonance line (670 nm, E, ~2

eV) is easily excited by T,~1 eV PF plasma.

h Lithium is quickly ionized in very cold, dense

PF plasma!

10¢

Lithium provides a unique opportunity to study erosion and
transport in the private flux region due to its ease of erosion &
excitation.

\

Private flux
plasma at DIMES

- Te
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D.G. Whyte, et. al.,

UCSD and General Atomics
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Simulation Package for High Energy
Interaction with General
Heterogeneous Target Systems

HEIGHTS Package

_SPLASH SUPERATOM
Liquid-Layer Splash/

B rittle Destruction SOLAS (Atomic Physics)
(Scrape-Off Layer)

\/

(Monte Carlo/
nergyDeposition

TRICS
(Tritium D iffusion)

A*THERMAL-S

(Thermodynamics/Heat
Transfer/MHD/Radiation
Transport)

W H
(Shock Wave
Hydrodynamics)

PHILT
(Pulsed
Hydrodynamics)

TRAP

(D|ffu5|on in
PhD Porous Structure) DRDep
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Droplet-Shielding Concept
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Liquid-Metal Layer on Divertor Plate
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stanein and |. Konkashbaev, J. Nucl. Mater. 273 (3) (1999) 326.
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Plasma-liquid surface interaction Modeling

(cont.)

Fuel dilution and radiation set limits
on core impurity concentration

|2

- Concentration limit set by dilution for Z < 18

thus, Sn limit set by radiation

For a tokamak configuration

T. Rognlien and M. Rensink,
LNL

- Concentration limit set by radiation for £ > 18;

!
w't
g / Radiation limit
N for ignition
% 20% power reduction
- from 10% dilution
S 402}
g
S
4
U F Ar  Fe Sn
0 10 20 30 40 - 50
Impurity charge, Z R
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asma-liquid surface interaction Modeling

Vertical position (m)

(cont.)

- Divertor 50 bl
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T 8
Major radius (m)

Gross and instantaneous (before liquid flow)
net erosion rates from WBC code

Electron temperature in outer scrape-off layer for
the UEDGE plasma solution with low-recycle
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é i
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E 200 |
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@lithium divertor

J. Brooks, et al. J. Nucl. Mater. 290-293 (2001) 185
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/ NSTX: application of flowing liquid metal\
(i.e. ALIST)

NSTX Device configuration

B. Nelson and P. Fogerty
APEX Task | ]
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/ Conclusions \

Plasma interactions with the surfaces limit the
desirability of fusion power

Advances in fusion science and performance
often follow new surface-related discoveries

Wall concepts involving Li show great potential
to solve many known problems

ALPS and APEX programs are actively engaged
In pursuing these solutions

Planned burning plasma devices should
consider including these — they may just be
what makes it work.
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