

JET DT Plans to end 2006

EFDA- JET Task Force DT presented by D Stork (Leader, Task Force DT)

Euratom/UKAEA Fusion Association,

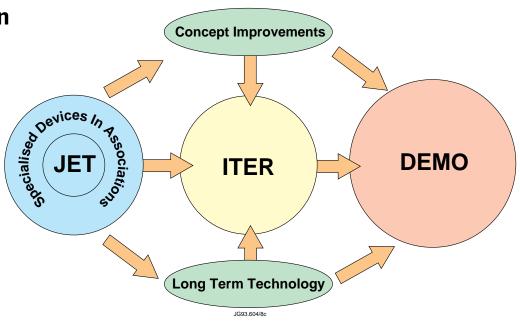
Culham Science Centre, Abingdon, Oxon OX14 3DB, UK

Health warning!

- The JET-EP programme and the JET DT programme described herein are the proposals of the JET-EP team and the EFDA-JET Task Force DT.
- Although they have been favourably received, and have passed all Peer Reviews and Committee Hearings to date -- they do not represent an agreed programme which is fully-funded (funding is being given for work-in-progress).
- The coordinators for the Task Force DT areas are:
 - Jef Ongena(ERM) and Jim Strachan (PPPL) ––ELMy H–mode
 - Clive Challis(UKAEA) and Rudolf Neu(IPP) -- OS/ITB plasmas
 - Duarte Borba(EFDA-CSU Culham) and Duccio Testa (MIT) $--\alpha$ physics
 - Elena Righi (EFDA-CSU Garching) and Philippe Lamalle (ERM/EFDA-CSU Culham) -- Heating Physics
 - Paul Coad(UKAEA), Rainer Laesser(FzK) and Ralf–Dieter Penzhorn (FzK) --Tritium technology

Overview

- Europe's route to a reactor via a Burning Plasma experiment
- DT issues and the plasmas to address them:
 - > Breakdown of issues as $n_T/(n_T + n_D)$, Q and P_{α} increase
 - Burning plasma definition and use
- Motivation for JET DT experiments
 - JET's unique DT capability;
 - **Reminder of JET DTE1 results unfinished business**
- Strategy for JET DT under EFDA
- Trace Tritium experiment
- JET-EP upgrade
- JET proposed 'DTE2' campaign



Europe's route to a reactor

- Route still runs from the present generation machines (JET under EFDA + Association machines)- via ITER-FEAT to a DEMOnstration reactor.
- ITER-FEAT remains our Burning plasma experiment.

European Fusion Strategy

EFDA European FUSION Development Agreement JET DT issues and plasmas to address them (I)

- The range of DT plasma issues which can be addressed by a given machine increases as these parameters increase:
 - > $n_T/(n_T+n_D)$ tritium concentration
 - > $\tau_{scenario}/\tau_{E}$; $\tau_{scenario}/\tau_{s\alpha}$ pulse length available from load assembly
 - > P_{α} , β_{α} α heating power
 - function of size (energy and fast particle confinement, current) and Additional Heating power
 - > Q fusion gain
 - function of size (confinement and current) and scenario (+ a 'threshold' Additional Heating power)
- A Burning plasma experiment clearly has an adequate range in all these parameters, but what can be learned from 'sub' Burning Plasmas?

EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT DT issues and plasmas to address them (II)

DT issue

- Particle transport isotope effects
- Integrated scenario demonstration (Part 1)
 - > fuel/mixture control
 - edge and recycling effects
- Energy transport
 - isotopic effects on MHD
 - isotopic effects on χ (incl effects on transport barriers)
- DT additional heating schemes

Plasma range

- Trace -T n_T/(n_T+n_D) ~ 1-510⁻²
- Low Q; low P_{α} ; $\tau_{scenario}/\tau_E > 3-5$
 - > $10^{-2} < n_T / (n_T + n_D) < 0.5 1.0$
 - > $n_{T}/(n_{T}+n_{D}) \sim 0.5$
- Low P_{α} upwards ; $n_T/(n_T+n_D) \sim 0.5$ $\tau_{scenario}/\tau_E > 3-5$
 - \triangleright Q \geq 0.2
 - ▶ Q ≥ 0.5

🐹 UKAEA

EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT DT issues and plasmas to address them (III)

DT issue

α – particle effects

Plasma range

- **'Significant'** P_{α} , β_{α} ; **'long pulse'**
 - > $β_{\alpha} ≥ 2-3 10^{-3}$
 - P_α ≥ P_{add,e} integrated over scenario duration (Q > ~ 0.5 for core effects; >~1 for global effects: depends on P_{add} scheme)

>
$$\tau_{\text{scenario}} \ge 3-5 (\tau_{\text{E}} + \tau_{\text{s}\alpha})$$

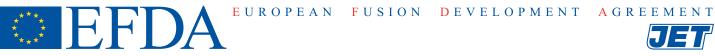
Integrated scenario demonstration (part 2):

α – particle effects

• $\mathbf{Q} \ge \mathbf{10}; \beta_{\alpha} > \sim 5 \ 10^{-3};$

 $τ_{scenario} \sim 10$ ($τ_E + τ_{s\alpha}$) or more also

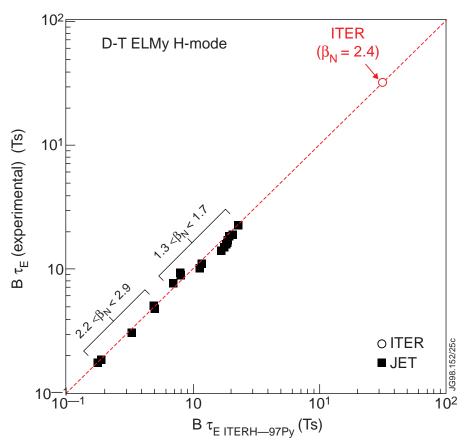
 $\tau_{\rm scenario} \sim 5 \tau_{\rm He}^* \sim 35-40 \tau_{\rm E}$.


The Burning plasma experiment is characterised by its ability to address the *Integrated scenario demonstration including full* α – *particle effects and helium ash control.*

By its nature it can, of course, address all the issues involving lower fusion performance.

EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT **Motivation for JET DT Experiments: JET's unique DT capability**

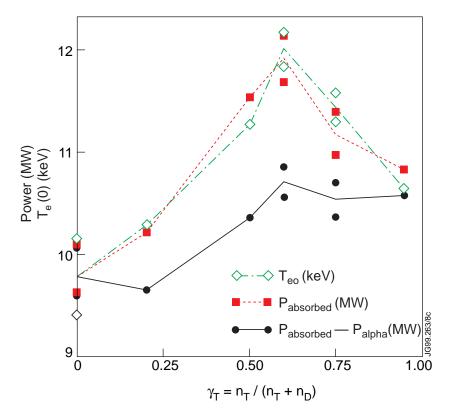
- JET has a unique capability to study DT tokamak plasmas and processes coupled with a *Divertor configuration* and an operational *Tritium recycling and purification plant.*
- A wide range of ITER-related DT specific physics can be addressed:
 - ▶ 'ELMy H-mode' (ITER reference) validation at high density ($n_{e} \approx n_{Greenwald}$)
 - concept improvement evaluation (impurity seeding, high triangularity, density peaking)
 - 'Advanced Tokamak' regime investigation
 - α -particle confinement with high central q
 - isotope effects (threshold, confinement, core-edge interaction)
 - > core α -heating physics and MHD characterisation
 - > DT compatible RF heating scheme qualification
- 'Live' tritium technology testing
- Validation and demonstration of high gain plasmas (0.5<Q<1)


Motivation for JET DT Experiments: DTE1 experiment results

- A series of DT experiments (with $10^{-2} < n_T/(n_T + n_D) < 0.95$ were performed in 1997 ('DTE1')
- **Campaign results featured:**
 - > successful ELMy H-mode ρ * scaling of DT plasmas to ITER;
 - heat and particle transport in ELMy H-mode DT plasmas similar to DD plasmas (no strong mass dependence $\tau_{E, \text{ core}} \sim M^{-0.17 \pm 0.1}$);
 - > H-mode threshold lower in DT than in DD ($P_{I-H} \sim M^{-1}$);
 - > electron heating by α -particles observed in DT plasmas;
 - no instabilities seen to be caused by α particles ($\beta_{\alpha} \sim 10^{-3}$ max);
 - record fusion power (16.1 MW) established in ELM-free H-mode (Q~0.65) and fusion energy (22 MJ) in ELMy H–mode (Q~0.22 for 10 τ_{E})
 - $2\omega_{CT}$ and high concⁿ (D)T RF heating schemes established, albeit with poor confinement and/or problems;
 - high tritium retention found in carbon surfaces near the divertor would indicate Safety and 'tritium economy' problems if scaled to a reactor.

EFDA European Fusion Development Agreement JET DTE1 results : 'wind tunnel scaling' to ITER

- JET D-T 'wind tunnel' experiments (with ITER q, β_N and v*) provide most complete data set for extrapolation to ITER (ITER-EDA shown)
- Global confinement is close to Gyro-Bohm scaling (short wavelength turbulence)


J Jacquinot et al, Nuc Fus 39(2)(1999), 235

CEFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT DTE1 results : electron heating by α – particles

- At fixed input power, the ratio of T:D (including the T⁰NBI : D⁰NBI) was varied in ELM-free H-mode plasmas (Q~0.65)
- $R_{\alpha} \propto n_T N_D$ thus as $\gamma_T = n_T / (n_T + n_D)$ varies, expect to see $P_{\alpha e}$ reach maximum at ~ $\gamma_T \sim 0.5$
- Note that the ELM-free phase lasted only 1-2 τ_{sα} thus the experiment does not test steady state

P R Thomas et al, PRL 25(1998),5548

CEFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT DTE1 results : α – particle instabilities absent

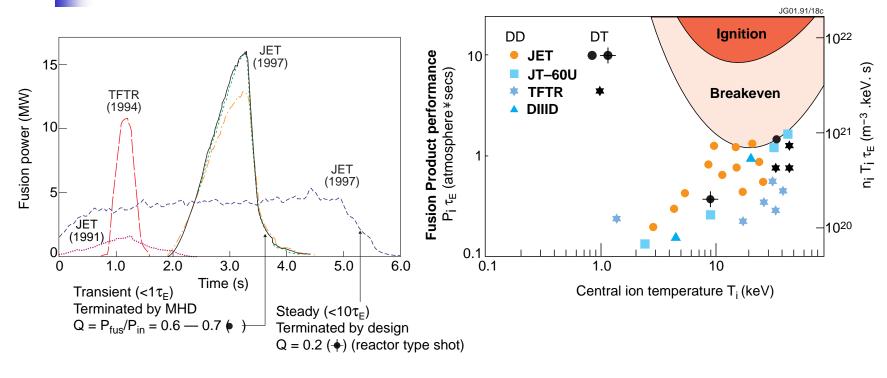
Pulse No: 42677

UNSTABLE

 ELM-free H-mode DT discharges in DTE1 were close to the lower stable boundaries for core TAE modes, but no instabilities were seen

$$d_{\text{O}}$$
 d_{O} d_{O}

 $P_{fus} = 12MW$

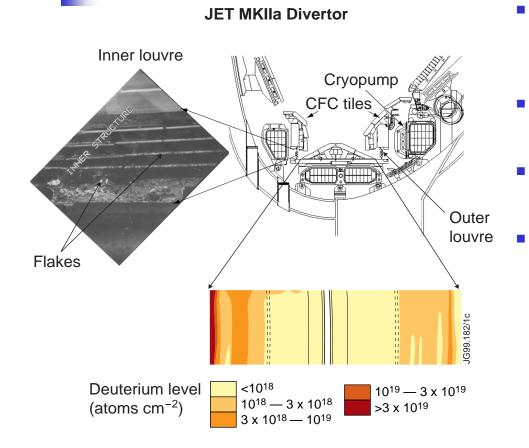

(bulk plasma)

UKAEA

 $(Q \sim 0.65; P_{\alpha} \sim 2.4 \text{ MW})$

S Sharapov

EVENOPEAN FUSION DEVELOPMENT AGREEMENT JET DTE1 results : transient and 'steady-state' fusion power



JET: M Keilhacker et al, Nucl Fus 39(2)(1999), 209 J Jacquinot et al, Nucl Fus 39(2)(1999), 235 TFTR: K McGuire et al, Fusion Energy 1996 (Vol 1), 19 (IAEA-CN-64/01-2)

WAEA

EUROPEAN FUSION DEVELOPMENT AGREEMENT

DTE1 results : Tritium retention in Torus

O EFDA

6 g out of 35 g tritium retained Most retained in carbon flakes at inner Divertor louvres

JET

- Strong SOL flow drives impurities to inner target
- Inner divertor plate is colder, thus deposition dominates
 - Flakes may result from C₂H_x release from hydrogen–rich amorphous films

J P Coad at al.

Motivation for JET DT Experiments: Issues unresolved in DTE1

- In spite of DTE1's success, there are several issues addressable in a sub-burning plasma which were not satisfactorily resolved or where new advances have opened up, or may open up, new experimental opportunities.
- ELMy H-mode -- work near n_e ~ n_{GW} -- T_e~T_i regimes -- deep fuelling profiles -- scaling to ITER?
- **Optimised shear/ Advanced Tokamak -- never satisfactorily** demonstrated in DT (scenario problems, fuel control) --develop to steady state -- higher P_{add} available;
- **Particle transport** –– not systematically investigated;
- α particle physics higher P_{α} would be available in SS OS/AT plasma;
- RF DT scenarios , systematic work with polychrome heating and more use of (³He)DT.

Strategy for JET DT physics under EFDA

- 2002: Begin scenario development at high I_p, B_T and high power(including increased NBI power) for high-density ELMy H-mode and steady-state Optimised Shear mode; develop 'afterglow' TAE mode scenarios.
- 2003: Systematic Trace tritium experiments on particle transport and (if possible) T-doped D pellet experiments to tag ablatant transport; HH and DD experiments to provide part of isotope scaling (eventually to include DT) database on MHD and ITB phenomena.
- 2004: JET-EP upgrade
- 2005: Develop higher power RF scenarios for T_e~ T_i in ELMy H-mode and OS/ITB plasmas; final scenario development at high power
- 2006: apply ECRH to stabilise NTMs in ELMy H-mode; (mid) final DTE2 experiment

E U R O P E A N F U S I O N D E V E L O P M E N T A G R E E M E N T

Trace-tritium experiments

- Previous JET data on trace-tritium was performed all in one day. Although the data suggested Gyro-Bohm particle transport scaling in the plasma core, the data was plagued by collinearity and signal:noise problems, also no work on particle transport by ELMs was done.
- To improve this, and simultaneously to exercise and retain the Facility's expertise to handle a DT campaign, Task Force DT have proposed a Trace Tritium experiment (mg of T₂ into JET) to study:
 - > particle transport scaling in ELMy H-modes (ρ *, v*, β) for fuel-ions, impurities and injected He 'ash';
 - fuel-ion transport in OS/ITB plasmas, important for mixture control questions, relevant to a full DT programme;
 - effect of ELMs on fuel-ion transport;

- pellet injection with '1% T-in-D' pellets and ablatant transport, especially for high field side injection
- Studies would generate ~ 5.5 10¹⁸ 14 MeV neutrons ~ 0.3% of the neutrons allowed under the JIA

JET-EP (Enhanced Performance) upgrade

- This upgrade to the JET facilities would:
 - Provide more flexible and higher power heating systems; \geq
 - allow ITER-like configurations at higher plasma current (4+ MA);
 - extend the useful life of the device to 2006
- **Research programme in support of ITER aimed to:**
 - investigate tokamak physics in the reference ELMy H-mode and ITB scenarios:
 - act as a technology test-bed for ITER subsystems

JET-EP (Enhanced Performance) upgrade JET capabilities after the EP upgrade

EUROPEAN FUSION

Usual JET ingredients:

O EFDA

- Large size coupled with Divertor configuration
- NBI 18 MW now \Rightarrow 25 MW in 2002
- ICRH 7 MW (range 3–11 MW)
- LH 4 MW +
- Be and full Tritium capability

plus

- ICRH 7–8 MW ITER–like antenna
- ECRH 5 MW upgradeable to 10 MW
- new Divertor Mark II HP
- new Diagnostics
- Pellet Enhancements (and possibly NBI) scale to be decided

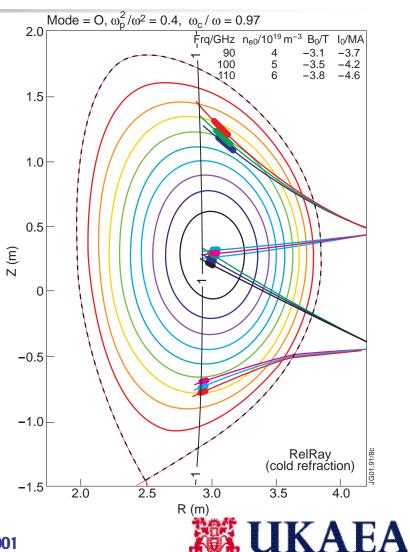
JET-EP (Enhanced Performance) upgrade New ITER-like ICRF antenna

ITER relevant features

- High power density target ~ 8 MW. m⁻² @ 4 Ω .m⁻¹ (R_c=1.3Ω)
- ELM resilience
- High power in 30–55 MHz range
- Be Faraday screen

Resonant Double Loop design as in

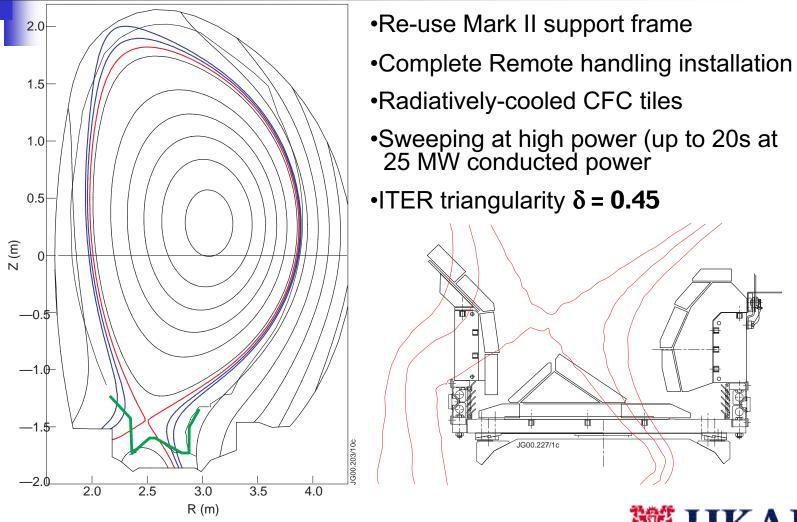
Tore-Supra -- to be tested with large ELMs in JET-EP



ECRH system

Technical set up

- 6 gyrotrons ~113.3 GHz; 1 MW each ; 10s
- gyrotrons with depressed collector
- double-containment diamond window at Torus
- closed or evacuated waveguides? Tbd
- plug-in launcher, 8 beams per port
- 2 beams on each final mirror
- beam radius at absorption location: 60–80 mm
- last mirror steerable -45° < φ_{tor} < +45° -30° < θ_{pol} < +30°



JET-EP (Enhanced Performance) upgrade Mark II-HP divertor (50 MW, 10s)

₫/⊕

JG00.227/1c

EFDA

EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT JET 'DTE2' Physics Programme Major Programme Areas

- The JET Implementing Agreement (JIA) allows a total of 2 10²¹ 14 MeV neutrons within the lifetime of JET (considerations of radioactive waste disposal – which falls on the UKAEA as Operator). DTE1 used ~ 2.5 10²⁰ neutrons.
- We therefore have (in principle) ~ 17.5 10²⁰ neutrons to 'spend' under the JIA for a major JET DT programme (DTE2)
- Task Force DT proposal to the JET-EP Phase Ad-Hoc Group is to exploit JET-EP heating & current drive system capabilities with five major programme areas
 - 'ELMy H-mode' integrated ITER reference regime DT programme
 - > 'Optimised Shear'/'Advanced Tokamak' integrated scenario DT programme
 - α-particle physics and related MHD studies
 - > Heating physics assessments
 - DT programme of ICRF heating schemes
 - Tritium technology issues
 - tritium retention studies
 - tritium cycle and processing studies

EUROPEAN FUSION DEVELOPMENT AGREEMENT Programme Area I: 'ELMy H-mode' Regime

- 'ELMy H-mode' programme
 - Validate integrated plasma regime in DT
 - high current
 - Greenwald density
 - 'acceptable' edge conditions
 - > Assess reference scenario concept improvements
 - high triangularity low Z_{effective}
 - impurity seeding RI-mode
 - 'natural' density peaking
 - pellet fuelling
 - Study isotope scaling of NTMs
 - stabilisation/de-stabilisation
 - **Extend** ρ* scaling of ELMy H–mode behaviour in DT to ITER 2nd priority
 - Probe local transport using modulated ECRH low priority

EUROPEAN FUSION DEVELOPMENT AGREEMENT

JET 'DTE2' Physics Programme Programme Area II: 'OS/AT' Scenarios

- 'Optimised Shear'/'Advanced Tokamak' (OS/AT) programme
 - Investigate isotope effects in OS/AT plasmas
 - accessibility conditions

EFDA 💭

- confinement and performance
- Establish 'steady-state' DT high performance regime at high density for comparison with ELMy H-mode
 - aim for $\tau_{pulse} \approx 5\tau_{\alpha \ slowing-down}$
 - aim for higher Q in similar conditions or similar Q at reduced current
- Study electron heating regime in DT
 - ITER-like heating, fuelling and torque
- > Assess α–particle confinement and heating in OS/AT plasmas
 - low interior poloidal field
- > Maximise fusion yield and/or Q *low priority as sole objective*

EUROPEAN FUSION DEVELOPMENT AGREEMENT SE HEIJA

JET 'DTE2' Physics Programme Programme Area III: α **-physics and MHD**

- α -particle physics and related MHD programme
 - > Extend α -particle heating experiments
 - scan DT fuel ratio and plasma content as in DTE1
 - higher power
 - study ion heating in the presence of energetic α -particles
 - Investigate α -particle driven Alfven Eigenmodes \geq
 - after glow experiments (as used on TFTR)
 - high β'_{α} (compared with previous experiments)
 - high n modes
 - > Study α -particle relationship with sawteeth, fishbones, other MHD
 - stabilisation/de-stabilisation of MHD modes by α -particles
 - re-distribution of α -particles by MHD modes
 - Isotope scaling of TAE physics \geq
 - Parasitic absorption of LH power by α -particles 2nd priority

EUROPEAN FUSION DEVELOPMENT AGREEMENT

- Heating physics programme (inc. proposed RF capabilities in JET-EP)
 - > Further assess $2\omega_{cT}$ RF heating in DT plasmas main ITER scenario
 - fast particle losses due to sawteeth optimise phasing
 - power modulation to measure direct electron heating
 - polychrome heating to minimise fast ion tail temperature
 - Investigate physics of high minority concentration (D)T RF heating physics
 - competing processes mode conversion, ⁹Be absorption
 - parasitic absorption on energetic α -particle population?
 - Establish ELMy H-mode with high power (³He)DT main ITER scenario
 - low concentration required (2–3%)
 - polychrome heating, high density
 - > Further study low minority concentration (H)DT heating 2nd priority
 - potential low B ITER scenario

SEFIJA **JET 'DTE2' Physics Programme Programme Area V: Tritium Technology**

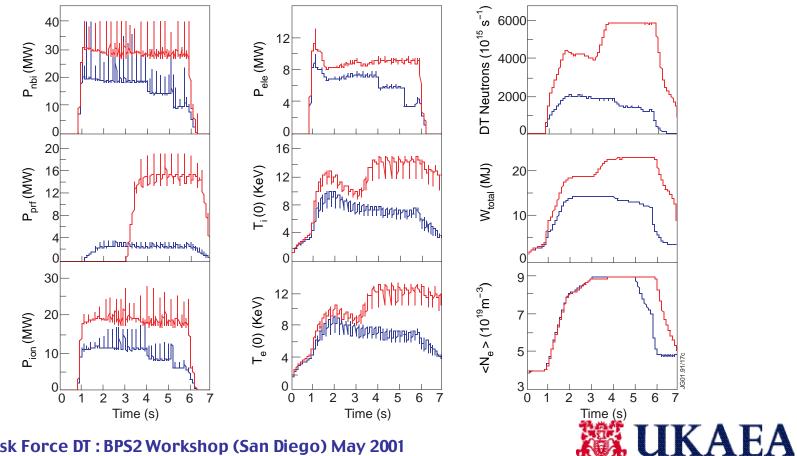
EUROPEAN FUSION DEVELOPMENT AGREEMENT

- Tritium technology programme (in parallel with other programmes)
 - Many issues can be addressed provided gram quantities of tritium are introduced into the torus
 - Tritium retention programme
 - tritium inventory and clean-up measurements
 - tritium retention in introduced samples
 - studies of flakes, other materials?
 - Tritium cycle and processing programme
 - PERMCAT de-tritiation unit
 - nickel catalyst beds
 - exhaust analysis (tritiated hydrocarbons, etc)
 - Tritium breeder blanket module experiments *vet to be assessed* \geq
 - In DTE1, the site inventory was $20g T_2$. 35 g was supplied to the Torus and \geq 64 g to the NBI due to the recycling capabilities of the plant, For DTE2 we have, in principle, a site limit of 90 g.

EUROPEAN FUSION DEVELOPMENT AGREEMENT

Summary of Hardware/Diagnostic Developments Required

- Lost α-particle detectors
- NPA system with multiple lines of sight
- New AE antennas for high-n modes
- Improved helium concentration measurement capability
- High quality core electron T_e measurement capability, incl. at high density
- Tritium pellet injector
- Tritium technology (many activities by Operator)
 - > Whole tiles or layers for wall material qualification (e.g. beryllium, tungsten)
 - > Microbalance for deposition measurements
 - Clean-up hardware
 - > Completion of commissioning of nickel catalyst bed for tritium cycle studies
 - > **PERMCAT installation and commissioning**
 - > Exhaust gas analysis devices
 - Installation of existing breeder blanket device


JET 'DTE2' Physics Programme High performance ELMy H-modes predicted

PRETOR code simulation -- H P L de Esch (CEA, Cadarache) Q~0.35

4.5 MA / 3.4T, Elmy H-mode.

JET-EP [19.5 MW 150 KeV T°; 13 MW 80 KeV D°, 15 MW idealised RF (50% to ions)] DT Pulse No: 42983

EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT JET DTE2 Gedanken DT Programme DTE1 Experience

- For planning purposes, and to convince the UK regulatory authorities, we must have a realistic estimate of numbers of pulses (length of programme), neutron budget and likely tritium inventory.
- Good preparation with deuterium plasmas vital to establish reliable scenarios before DT campaigns to minimise wasted neutron production
- To calculate neutron production we take:
 - Estimates of performance from scaling or from success-oriented targets;
 - > 'Overhead' ⇒ no. 'set-up' pulses and failures per 'good' pulse based on DTE1 experience.

DTE1 programme	'set-up' & failure : 'good' pul
ELMy H-mode	2:3
OS regime	3-4:1
Hot -ion H-mode	1:1
α -heating experiments	3:2
(Hot-ion H-mode – inc. repeats	\$

EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT JET DTE2 Gedanken DT Programme Estimated Neutron Budget (1)

- 'Real-time' control valuable to minimise neutron overhead thus can prematurely stop heating plasmas that deviate from required performance trajectory
- Examples of performance assumption for accountancy purposes $(Q \equiv P_{fus}/P_{in})$
 - ► ELMY H-mode Q≈0.2 in DTE1 at 4.5MA/3.4T, Z_{eff}≈2.5-3.0 assume : P_{in}=47MW; Z_{eff}=1.65; t_{pulse}=5s ; scaled from PRETOR $\Rightarrow Q≈0.63$; P_{fus}≈30MW; neutrons≈510¹⁹ per pulse (≈3% of total budget) (note beneficial effect of improvement of plasma purity).
 - ► ELMy H-mode (³He)DT minority or (D)T high concentration minority heating Q≈0.22 in DTE1 high minority (D)T scheme at 3.8MA/3.8T assume : P_{RF}=15MW; Q≈0.25; t_{pulse}=5-10s ⇒ P_{fus}≈4MW; neutrons≈0.7-1.3 10¹⁹ per pulse
 - > Low I_P/B_T cases and other heating scenarios assumed to achieve lower yield
- Estimate 'realistic' budget (based on historic failure rate) and 'minimum' budget (based on perfection).
- Set 'Management Limit' between the two to encourage good preparation and 'Expansion programmes' to capitalise on success of minimising yield.

EUROPEAN FUSION DEVELOPMENT AGREEMENT

JET DTE2 Gedanken DT Programme Estimated Neutron Budget (II)

-		'Realistic'	'Minimum'
Programme Area	Sub-programme	Neutron	Neutron
		Yield	Yield
ELMy H–mode 1 <i>2 good pulses</i>	Greenwald Limit scans	2.70 1 0 ²⁰	2.18 10 ²⁰
	Greenwald Limit in other regimes	1.38 10 ²⁰	1.08 10 ²⁰
	NTM isotope scaling at 1.8T/1.8MA	1.31 10 ²⁰	1.00 1 0 ²⁰
	High yield steady–state demo	3.80 1 0 ²⁰	2.40 1 0 ²⁰
	Isotope scaling	1.2010 ²⁰	0.75 10 ²⁰
	Dominant electron heating	0.60 1 0 ²⁰	0.38 1 0 ²⁰
α -physics α MHD α	α -particle heating	2.60 1 0 ²⁰	1.50 1 0 ²⁰
	α -particle driven AE modes	1.7010 ²⁰	1.1010 ²⁰
	Other physics	0.40 1 0 ²⁰	0.40 10 ²⁰
Heating Physics <i>8+30 good pulses</i>	2ωCT, (T)H, (T)D and (H)DT	0.03 1 0 ²⁰	0.03 1 0 ²⁰
	High concentration (D)T heating	0.40 10 ²⁰	0.27 10 ²⁰
	(3He)DT high power ELMy H-mode	0.37 1 0 ²⁰	0.27 10 ²⁰
Clean-up		0.50 1 0 ²⁰	0.50 1 0 ²⁰
Total	1 st priority expts. 60–70 good pulses	16.99 10 ²⁰	11.86 10 ²⁰
Expansion Work	ρ * scan	1.34 10 ²⁰	0.88 10 ²⁰

C EFDA

Conclusions (I)

- Previous JET and TFTR DT experiments very successful both in physics and technology terms
- Many questions still unanswered
 - > Advances in scenario development since last DT experiments
 - > Issues raised by analysis of previous investigations
 - > Increased power/capability available
- A Sub-Burning Plasma Experiment can address all DT issues except those associated with an Integrated scenario demostration of α -particle and He ash control - although for Q<1 specific α -particle effects can only be addressed tangentially. JET has a unique capability as a Sub-burning plasma experiment to address a wide range of DT issues

Conclusions (II)

- A programme has been proposed to cover a wide range of experiments focused on ITER specific issues
 - Within JET-EP time frame (2006)
 - Within JIA neutron limitations (a Management Limit of 1410²⁰ neutrons is proposed)
 - Within the tritium site inventory (50 g of tritium is estimated)
- The proposal received the favourable endorsement of the JET-EP Ad-Hoc Group in their report (end-March 2001).
- The strategy is to maintain DT capability through early trace tritium experiments and is flexible for 'end-of-life' date

