Fast Ignition Program

E. Michael Campbell

- Promise
- Status
- Challenges
- Implementation
- Plan

Presented at
FESAC Development Path Panel
General Atomics

January 14, 2003
The original FI concept uses laser generated MeV electrons to ignite DT fuel at about 300 g cm\(^{-3}\).

Hole boring or cone for laser to penetrate close to dense fuel

1 MeV electrons heat DT fuel to 10 keV

Pre-compressed fuel 300 g cm\(^{-3}\)

100 kJ, 20 ps

Fast ignition

Ignition spot energy

\[E = 140 \left(\frac{100}{\rho}\right)^{1.8} \text{ kJ} \]

e.g. \(\rho = 300 \text{ g cm}^{-3} \), \(E = 17 \text{ kJ} \) in <20 ps

to \(r = 19 \mu\text{m} \) hot spot

at \(7 \times 10^{19} \text{ W cm}^{-2} \)

Atzeni. Phys. Plasmas 6 3316 (1999)

Tabak et al. Phys Plasmas 1,1626,(1994)
Fast Ignition concept leads to an attractive system

- Low threshold to reach ignition
 ⇒ Use lower brightness drivers
- High gain for efficient power plant
- No central hot spot required - relaxes drive symmetry and target smoothness requirements - driver configuration and target fabrication advantages
- Compatible with any driver
Fast Ignition may allow longer wavelength laser implosion systems - The advantages are significant

- **Efficiency**
 - Typical energy efficiency for conversion of 1053 nm to 351 nm is 50% (NIF, Omega)

- **Aperture**
 - Damage threshold for 1053 nm is ~35 J/cm², 532 nm is 25 J/cm² and 351 nm is ~12-15 J/cm²

 2x the pulsed power (or diodes!)

 40%-70% reduction in aperture!
Allows flexible reactor development

- Relax construction constraints
 - Flexible drivers and driver locations
 - Possible self T-breeding
- Target injection
 - Not so temperature sensitive
 - Reentrant cone protects from hot gas
FI program leverages both NNSA and international capabilities

- **Laser coupling and transport (LLNL, LANL, LULI (France), RAL (UK), GEKKO (Japan))**
 - $E_{\text{laser}} \sim 140 \left(\rho/100 \right)^{-1.8} \eta^{-1} \text{ kJ}$

- **Compression (LLE, SNL, GEKKO, RAL)**
 - $E_{\text{comp}} \sim 1.4 \times 10^3 \rho^{-4/3} (\rho R)^3 \eta^{-1}_{\text{comp}}$

- **Integral experiments (GEKKO, RAL)**
U.S. Fast Ignition research is linked to world-wide effort

- Requires facilities with powerful short-pulse (ps) lasers
- Substantial programs in England, France, Japan
 - Japanese researchers are staking their program on it
- United States program is important
 - Nova was first PW in ‘96
 - Proceeding with DoE high energy PW initiative
 - Next-step PW facility at SNL, NIF, Omega

Central Laser Facility
Rutherford Appleton Lab, UK

Institute for Laser Engineering
Univ. of Osaka, Japan

GSI & Technische Universitat
Darmstadt, Germany

Max-Planck-Institut
Garching, Germany
Layered, planar targets have been utilized to study laser-plasma coupling and transport with 100 TW, 0.1 to 1 ps lasers.

- CCD
- Laser
- Bragg crystal
- Ti and Cu Kα (10 µm res.)
- Kα fluor
- Electrons
- CCD
- Planckian 18 nm XUV (5 µm res.)
- XUV mirror
Ignition energy transport requires more understanding

- Initial steps look good
 - Efficient electron production
 - Produce well defined beam
 - Can heat compact spot the size of K_α beam

- But beam and heated spot is much larger than the laser focal spot

K_α imaging of electrons shows production of collimated beam

Thermal XUV shows 30 eV heating in 120 µm hot spot
Resistivity dominates our current experiments but it will be negligible in full scale fast ignition

- Ohmic fields strongly affect electron transport in cold metals
- Facilities at Vulcan & Gekko allow testing in compressed plasmas

⇒ Currently developing new experimental geometries for such experiments
Fuel assembly targets with cones are a focus for FI research

- Shell/cone interface hydro entrainment of cone material
- Preheat of cone ahead of imploding shell
- Cone tip-dense core transport distance
- Avoidance of ‘hollow centre’ in compressed core
- Drive symmetry and surface smoothness requirements

Validate fuel assembly concepts in ‘hydro-equivalent’ targets
Fuel assembly seems straightforward

LLNL designed NIF scale capsule (absorbs ~180kJ*)
can be imploded to $<\rho R>_{DT} = 2.18 \text{ g cm}^{-2}$.
* expect 10% overall coupling efficiency, or better

- Basic target design works
 - Target compresses to ignitable mass in Lasnex
 - Initial expts show agreement with model
 - Other variations being tested at SNL and Omega

Expt at Omega

Omega expts match simulations

Blob has hollow core, is ~100 µm from cone.
Fuel assembly experiments with cone-focused targets leverage the OMEGA direct-drive program.

Direct-drive cone targets shot on OMEGA in FY02 (LLNL, GA)

FY02

FY03

FY05

Pinhole camera (H8)

The full suite of OMEGA diagnostics will be applied to these implosions.
A z-pinch driven fast-ignitor concept is being developed

- Z hohlraum designs should allow $\rho = 90-100$ g/cc, $\rho_r = 0.4$ g/cm2
- Simulations for ZR with cryo-DT capsule give $\rho = 160$ g/cc, $\rho_r = 0.65$ g/cm2

D. Hanson, R. Vesey, et al., 6th Fast Ignitor Workshop, 2002
Fast ignition imploded fuel designs are being validated with experiments on Z

- Preliminary image analysis agrees qualitatively with 2D simulations
- 2D simulations give polar-averaged peak $\rho = 60$ g/cc, $\rho_r = 0.3$ g/cm2

D. Hanson, R. Vesey, et al., 6th Fast Ignitor Workshop, 2002
GEKKO laser: 12 green laser beams
$E = 10 \text{ kJ}$, $t = 1\text{-}2 \text{ nsec.}$
Uniform irradiation (phase plates) for high
density compression.
$I \approx 10^{14} \text{ watts/cm}^2$

PW laser: 1 beam ($\sim 400 \text{ J}$)
At 1 micron.
PW peak power is utilized for fast heating.
$I \approx 10^{19} \text{ watts/cm}^2
The experiments were carried out with a Au-cone CD shell. The CD shell was imploded with 9 beams of the GEKKO XII laser.

Parameters for Integral Fast Ignition Experiments

- **PW for heating**
 - 1 beam / 300 J
 - 1.053 µm / 0.5ps

- **GXII for implosion**
 - 9 beams / 2.5 kJ/0.53 µm
 - 1.2ns Flat Top w/ RPP

- **Au cone**
 - 30° open angle (the picture: 60deg)
 - Thickness of the cone tip: 5µm
 - Distance of the cone top: 50µm from the center

- **CD shell**
 - 500µm/6-7µmt

- **IL = 10^{19} W/cm^2**
Peta watt laser heating experimental results of cone guide target

Required timing is 50ps

800keV

IF/OV1
T.Yamanaka
Integral FI experiments are well matched by Simulations

By assuming 30\(\mu\)m\(\phi\) beam spot and 40% energy coupling efficiency from laser to REB

Heating Laser power, \(P_{lh} = I_{REB} \times \pi r_b^2 / \eta_h = 1.77E-5 \times I_{REB}\)

\(\frac{\text{Neutron Yield}}{\text{Heating Laser Power (PW)}}\)

\(\langle T_i \rangle \text{ [keV]}\)

\(T_h = 500\text{keV}\)

\(T_h = 2\text{MeV}\)

\(\circ\) Sub – MeV electrons play important roles in core heating.

\(\circ\)
Protons and ions are accelerated in relativistic laser-solid interactions by three principal mechanisms:

I. Thermal expansion
 \[T_i \sim 5-10 \times T_e \]

II. Front-surface charge separation
 Static limit: \[T_i \sim T_e \]

III. Target Normal Sheath Acceleration
 \[E_i \sim 10 \times T_e \]
 - Electrons penetrate target & form dense sheath on rear, non-irradiated surface
 - Strong electrostatic sheath field ionizes surface layer
 \[E_o \sim kT / e\lambda_d \sim MV/\mu m \]
 - Rapid (~ps) acceleration in expanding sheath produces very laminar ion beam
Proton ignition is a newer concept avoiding the complexity of electron energy transport.

- Same driver and fuel assembly options
- Novel physics of Debye sheath proton acceleration

- Simpler proton energy transport by ballistic focusing
- Larger laser focal spot-easier to produce

PW ION-Plasma coupling experiments have begun: 100TW, 100fs expt. at JanUSP shows proton focusing and enhanced isochoric heating of a 10 micron Al foil.

Streak images of visible Planckian emission.
A credible US pathway for FI progression from Concept Exploration to Proof of Principle is emerging.

- NNSA funds facility (incl PW)
- OFES funds specific science

Proof of Principle
- Multi-KJ PW laser added to Omega, ZR, NIF
- Demo significant core heating of relevant imploded fuel assembly

Omega, ZR, NIF

Concept Exploration
- Implosions
- Laser-plasma interactions
- Transport

Multi-KJ Petawatt S&T
- Gratings
- OPA’s
- Facility Issues
New DOE facilities proposed for FY06/07 would support a ‘proof of principle’ study of fast ignition

SNL Z Beamlet / Z

HEPW at NIF

Omega EP
Integrated 2-20kJ short pulse experiments will better define ignition requirements

- Revisit key physics issues at FI relevant intensities with order of magnitude higher short pulse energy and pulse duration
- Conduct 2 to 20 kJ HEPW integrated experiments with FI relevant resistive and other effects at new DOE facilities
- Develop integrated model- hydro and burn, hybrid PIC electron transport, 3D PIC interaction physics, relativistic propagation - use new teraflop computers
- Cryo target fabrication and cryo -experiments
- Design full scale ignition expts
Significant hurdles specific to fast ignition

- ~10 kJ short pulse lasers for ignition energy
 - High damage threshold gratings
 - Good focus
- Cone design
 - Generate electrons efficiently
 - Minimize contamination of fuel
- Target design
 - Allow efficient transport & heating
- Pointing and timing

Nuclear burn sensitive to e-beam spread

Simulated D-D neutron burn images

Laser μFocusing using a Conical Target

Contour plot of the square root of laser intensity
Efficient, **Damage resistant** dielectric gratings are required for FI
Proposed Roadmap for IFE by Fast Ignition

- **Concept exploration**
 - FY03

- **Proof of principle**
 - FY06

- **Ignition and IRE**
 - FY09

- **ETF**
 - FY12

- **NNSA HEPW lasers**
 - FY15

- **Integrated modeling**

- **Driver/power plant scenarios/designs**

- **IRE 10Hz HEPW**

- **Japan**
 - Firex I:
 - breakeven
 - Firex II:
 - Burn
FI Research would require a n OFES-NNSA Partnership

• Concept exploration
 – OFES: $3-5M/year for modeling, experiments, targets
 – NNSA: $5-10M/year to develop laser technology
 (damage resistant gratings), design PW facilities

• Proof Of Principle
 – OFES: $5-10M/year for modeling, experiments, targets
 – NNSA: Add multikilojoule PW lasers to Ω, Z, NIF (estimate $30-50M per facility)
NNSA has identified need for adding PW to existing facilities

- Radiography
 - High energy ($h\nu > 30$ keV) xray backlighting
 - Proton Radiography (under development)
- Ultra-high energy density physics
 - $P > 1$ Gbar
 - $T_R \sim 1$ keV
- Isochoric heating
 - Ions, high energy photons (under development)
Unused slides
Goal: Show sufficient physics agreement between modeling and experiment to propose PoP step

Activities:
- **Fuel assembly:** experiments and hydro modeling
- **Heating/Transport:**
 - Experiments, with conductivity and scattering closer to compressed DT plasma
 - Modeling of cone, of experiments
 - Evaluate “ion ignition”
- **Subscale modeling:**
 - 3D PIC (absorption, electron production)
 - Hybrid models benchmarked against experiments (electron transport)
Goal: Show integrated understanding of the gain curve, and of components required for IFE reactor design to give confidence in attractive reactor design

<table>
<thead>
<tr>
<th>Activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Integrated proof of principle experiments using the proposed NNSA HEPW facilities</td>
</tr>
<tr>
<td>• Integrated full scale models coupling hydro, optical properties, ignition and burn leading to an ignition target design</td>
</tr>
<tr>
<td>• Final Optics R&D</td>
</tr>
<tr>
<td>• Target Fabrication R&D</td>
</tr>
<tr>
<td>• Reactor Design Studies</td>
</tr>
<tr>
<td>• Demonstrate a full scale short pulse beamline</td>
</tr>
</tbody>
</table>
Goal: Demonstration of high gain targets and full design of reactor including target factory and injection system

Activities:
• High gain ignition
• Integrated Research Experiment for final optics and target injection
• Reactor engineering design
• Cryo targets with path to mass production
• Pellet factory engineering design
• Driver demonstration
OMEGA EP is designed to perform integrated fast-ignition experiments with cryogenic implosions

Channeling beam:
- $I > 10^{18}$ W/cm2
- $E \sim 0.5$ to 2.6 kJ in 100 ps
- $r_{focus} \sim 15 \mu m$

Igniter beam:
- $I > 10^{19}$ W/cm2
- $E \sim 0.5$ to 2.6 kJ in <10 ps
- $r_{focus} < 10 \mu m$

Fuel ρr up to 0.5 g/cm2 and ρ up to 500 g/cm3
Simulations show that a 1-kJ, 1-MeV electron beam raises the T_{ion} in the high-density fuel shell to ~ 10 keV.
Planned modification of NIF will provide a quad of HEPW beams in suitable for FI expts

Indirect drive configuration

Existing beam path conversion concepts

Indirect drive port

Equatorial ports for HEPW

Original NIF

HEPW adapted NIF
A ‘proof of principle’ FI experiment at NIF has been designed in detail using Lasnex modeling.

250kJ Hohlraum drive with 8 fold 2 cone symmetry (8 quads per LEH)

CD shell 740 μm radius, 160 μm wall Imploded to 45 μm radius, 250 gcm⁻³ ρr =1.0 gcm⁻²

4 HEPW ignitor beams total of 20kJ, 20ps driving electron or proton ignition
Direct-drive ignition and fast ignition may be possible on the NIF with the indirect-drive beam configuration.

Aitoff projection of intensity on a capsule:

NIF direct-drive distribution using 24 (\times4) beams in indirect-drive illumination

\[\sigma_{\text{rms}} = 48\% \]
\[\text{peak-to-valley} = 157\% \]

NIF direct-drive intensity distribution with 24 (\times4) beams repointed to a pattern similar to OMEGA 24

\[\sigma_{\text{rms}} = 6\% \]
\[\text{peak-to-valley} = 22\% \]

The penalty from asymmetric illumination may be mitigated by the clever use of phase plate design, beam pointing, pulse shaping, and ice layer/capsule shimming.
Pulsed power—a new testbed for xray driven fuel assembly FI studies

- Rapid Progress in Z pinch physics has provided ~2MJ and ~200TW of xrays for fuel assembly
- The Beamlet laser from LLNL has been successfully coupled to Z
- Modifications are underway
 - Increase xray energy to >3 MJ
 - CPA modification to beamlet
 - > 1kJ in 1-5 psec