# The RFP Development Path

S. C. Prager University of Wisconsin

January, 2003

## Reminder: Two views of non-tokamak research



Optimal: mixture of both approaches

## <u>Outline</u>

- RFP features and status
- Steps in development plan
- Schedule and cost



## Why the RFP as a fusion concept?

low magnetic field

High beta

Very high engineering beta (low field at coils) Normal (nonsuperconducting) coils, reduced shielding High mass power density (compact) Efficient maintenance/disassembly Possibly free choice of aspect ratio

### The TITAN RFP Reactor Design

(Najmabadi, Conn et al., 1990)

- a = 0.6 m, R = 3.8m, I = 18 MA
- Integrated blanket/TF coil concept
- Mass power density ~ 400 800 kWe/tonne
- Neutron wall load ~ 5 20  $MW/m^2$
- Single piece maintenance (high availability)
- COE ~ 40 mill/kWh (FPC ~ 10% of total cost)

Single piece maintenance



TITAN-I CENTER-LINE CROSS SECTION

PARAMETRIC VARIATION OF TITAN-I DESIGN POINT



### The RFP Status

- 1999: recommended by FESAC as PoP program
- Now: intermediate between CE and PoP program (US experimental funding ~\$5M/yr required PoP experimental funding ~ \$8M/yr)
- Outside US: 1 PoP experiment (Italy)

> 2 CE experiments

Cost/schedule extrapolation to DEMO is speculative

### Current RFP Physics Issues

| Issue                      | Status                                                          | Next                                                          |
|----------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|
| Confinement                | Tokamak quality,<br>achieved transiently                        | Discover ultimate<br>confinement, sustain<br>good confinement |
| beta                       | High beta achieved $\beta_{tot} \sim 15\%, \beta_{tor} > 100\%$ | Discover ultimate<br>limit                                    |
| Current<br>sustainment     | Open issue                                                      | Test ac helicity<br>injection, examine<br>pulsed RFP scenrios |
| Resistive wall instability | Observed, external kink<br>feedback achieved                    | Develop solution<br>(rotation, feedback)                      |

### RFP confinement comparable to tokamak (at same I, n, P, size, shape)



ELMy H-Mode

With high beta and weak field

### Criteria to advance to next step

- Demonstrate sustained plasmas with confinement time = 10 ms beta = 15% T = 1 keV
- Develop understanding that physics is likely to scale favorably

### The Next Step

• Either more advanced PoP or Performance extension experiment

I ~ 1 - 4 MA T ~ 2 - 10 keV duration ~ 0.1 - 5 sec

 Results from current program will determine resistive wall mode stabilization plasma shape, aspect ratio plasma heating and current drive

### The RFP Burning Plasma Experiment

Are results from a tokamak BPX transferable to an RFP?

Alpha particle physics classical effects α-generated instabilities instability effects on alphas



basic physics transfers, geometric details differ, maybe magnetic fluct.

Burn control/integration: may differ

Fusion technology: mostly transfers

Can we skip the RFP BPX step? (assuming a prior tokamak BPX)

Probably not.

Note: to date, tokamak research has greatly accelerated non-tokamak research. But, no step has ever been skipped

> predictability in 20 years will be much improved, but the risk of skipping the BPX step is high

## The RFP materials program

Similar to the advanced tokamak materials program

- IFMIF: as for tokamak program
- CTF: can be an RFP or tokamak



- Fusion power ~ 124 MW
- Fluence ~ 3.4 MW  $yr/m^2$
- Neutron wall load ~ 5 MW/m<sup>2</sup>
- a = 0.3 m, R = 1.8m, I = 10 MA
- Cost ~ \$336 M 1988

## An RFP Development Schedule

#### Assume:

- An RFP BPX is needed
- IFMIF and a tokamak CTF proceeding separately
- Favorable scientific progress at each step
- small time lag between steps

### An RFP Development Schedule



#### $\Rightarrow$ 37 years to an RFP Demo

with major fusion science advances along the way

## <u>Costs</u>

(i.e., informed guesses for the purpose of discussion)

In addition to tokamak program costs:

PoP experiment PE experiment construction PE experiment operation BPX construction BPX operation underlying RFP research \$0.06B \$0.2 \$0.6 \$1 (0.3 FPC only) \$1.5 <u>\$0.15</u> \$3.5B (2.8B) \$87M/yr (70M/yr)

## Plan with an RFP CTF



#### CTF begins simultaneous with BPX - increased risk

### Approach #2 to development paths

Describe plan also via science issues

Example

- issue: determine transport vs  $B_T$
- how: integrated studies in

tokamak, ST, RFP, spheromak, FRC strong  $B_T \longrightarrow weak B_T$ 

## <u>Summary</u>

An RFP DEMO is possible in ~35 years

- Assuming successful, timely physics
- For modest additional cost