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CONTEXT & REFERENCES

• US DOES NOT (YET) HAVE A BURNING PLASMA
OR ITER PROGRAM ESTABLISHED:
NO “OFFICIAL” LIST OF PRIMARY US SCIENCE
INTERESTS

• VIEWS EXPRESED HERE ARE MY OWN, INFORMED
BY PARTCIPATION IN US FUSION COMMUNITY
BURNING PLASMA PLANNING ACTIVITY:
+ UFA BURNING PLASMA WORKSHOPS: AUSTIN 2000; SAN

DIEGO 2001
+ SNOWMASS FUSION SUMMER STUDY 2002

AND
+ INTERNATIONAL TOKAMAK PHYSICS ACTIVITY (ITPA)



OUTLINE

• BURNING PLASMA BASICS

• FRONTIER SCIENCE IN BURNING PLASMA:
+ Q~5: a-EFFECTS ON TAE STABILITY

+ Q~10: STRONG NON-LINEAR COUPLING

+ Q≥20: BURN CONTROL & IGNITION



FUSION “ SELF-HEATING”  POWER BALANCE

274-01/rs

FUSION POWER DENSITY: pf = Rεf =      n <σv>εf   for nD = nT =       n

TOTAL THERMAL ENERGY 
IN FUSION FUEL,
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STEADY-STATE FUSION POWER BALANCE

274-01/rs

0 Pα + Pheat =⇒dW
dt

W
τE

Define fusion energy gain,   Q ≡
Pfusion

Pheat

5 Pα
Pheat

=

Define α-heating fraction,   fα ≡

Scientific
Breakeven Q = 1 fα = 17%

Q = 5 fα = 50%

Q = 10 fα = 60%

Q = 20 fα = 80%

Q = ∞ fα = 100%

Pα
Pα + Pheat

Q
Q+5

=

Burning
Plasma
Regime



THERE ARE TWO TYPES OF BURNING PLASMA ISSUES...

• GETTING & STAYING THERE:
+ DENSITY, TEMPERATURE, AND tE REQUIRED FOR Q ≥ 5
+ MHD STABILITY AT REQUIRED PRESSURE FOR Q ≥ 5
+ PLASMA EQUILIBRIUM SUSTAINMENT (t > tSKIN)
+ POWER, FUELING, & REACTION PRODUCT CONTROL



Major Advances & Discoveries of 90’s Are Foundation
for ITER Burning Plasma Experiment

Burning Plasma
Experiment

MHD Transport &
Turbulence

Wave/Particle
Interactions

Plasma Wall
Interactions

• q-profile control
and measurement

• steady-state,
bootstrap equilibria

• active mode control
of kink & tearing

• shear-flow turbulence
suppression

• gyro-kinetic theory  
based models

• extensive data-base
models on transport 
using dimensionless
scaling

• alpha heating in DT
found to be classical
for Q ≤≤≤≤ 1

• “standard model” of
Alfvén Eigenmodes

• detached divertor
demonstrated

• large scale models
developed

• LHCD & ECCD used
for near SS & mode
control

• high heat-flux
metallic technology
developed 



THERE ARE TWO TYPES OF BURNING PLASMA ISSUES...

• GETTING & STAYING THERE:
+ DENSITY, TEMPERATURE, AND tE REQUIRED FOR Q ≥ 5
+ MHD STABILITY AT REQUIRED PRESSURE FOR Q ≥ 5
+ PLASMA EQUILIBRIUM SUSTAINMENT (t > tSKIN)
+ POWER, FUELING, & REACTION PRODUCT CONTROL

• NEW SCIENCE PHENOMENA TO BE EXPLORED
+ Q ≥ 5: ALPHA EFFECTS ON STABILITY & TURBULENCE
+ Q ≥ 10: STRONG, NON-LINEAR COUPLING BETWEEN

ALPHAS, PRESSURE DRIVEN CURRENT, TURBULENT
TRANSPORT, MHD STABILITY, & BOUNDARY-
PLASMA

+ Q ≥ 20: STABILITY, CONTROL, AND PROPAGATION OF THE
FUSION BURN AND FUSION IGNITION TRANSIENT
PHENOMENA



BURNING PLASMA IS A NEW REGIME:
FUNDAMENTALLY DIFFERENT PHYSICS

NEW ELEMENTS IN A BURNING PLASMAS:

SELF-HEATED SIGNIFICANT ISOTROPIC ENERGETIC
BY FUSION ALPHAS POPULATION OF 3.5 MEV ALPHAS

LARGER DEVICE SCALE SIZE

PLASMA IS NOW AN EXOTHERMIC MEDIUM & HIGHLY NON-LINEAR

COMBUSTION SCIENCE ≠ LOCALLY HEATED GAS DYNAMICS

FISSION REACTOR FUEL PHYSICS ≠ RESISTIVELY HEATED FUEL BUNDLES

⇒⇒⇒⇒ OPPORTUNITY FOR UNEXPECTED DISCOVERY IS VERY HIGH⇐⇐⇐⇐



Snowmass: ITER Physics Interests
• Exploration of alpha particle-driven instabilities in a reactor-

relevant range of temperatures.
• Capability to address the science of self-heated plasmas in

reactor-relevant regimes of small r* (many Larmor orbits)
and high bN (plasma pressure), and with the capability of
full non-inductive current drive sustained in near steady
state conditions.

• Exploration of high self-driven current regimes with a
flexible array of heating, current drive, and rotational drive
systems.

• Strongly-coupled physics issues of equilibrium, stability,
transport, wave-particle interactions, fast ion physics, and
boundary physics in the regime of dominant self-heating.

• Investigation of temperature control and removal of helium
ash and impurities with strong exhaust pumping.



IMPORTANT PHYSICAL PROPERTIES OF α-HEATING

• FOR Q ~ 10: nTτE ~ 2 x 1021 m-3 keV s  for T ~ 10 keV
+ WHEN NON-IDEAL EFFECTS (PROFILES, HE ACCUMULATION,

IMPURITIES SOMEWHAT LARGER VALUE ~ 3 X 1021 m-3 keV s
• FOR TOKAMAK “TYPICAL” PARAMETERS AT Q ~ 10

n ~ 2 x 1020 m-3 T ~ 10 keV τE ~ 1.5 s
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Note at B ~ 5 T: vAlfvén ~ 5 x 106 m/s < vα



IMPORTANT PHYSICAL PROPERTIES OF α-HEATING

• FOR Q ~ 10: nTτE ~ 2 x 1021 m-3 keV s  for T ~ 10 keV
+ WHEN NON-IDEAL EFFECTS (PROFILES, HE ACCUMULATION,

IMPURITIES SOMEWHAT LARGER VALUE ~ 3 X 1021 m-3 keV s
• FOR TOKAMAK “TYPICAL” PARAMETERS AT Q ~ 10

n ~ 2 x 1020 m-3 T ~ 10 keV τE ~ 1.5 s

• BASIC PARAMETERS OF DT PLASMA AND α
vTi ~ 6 x 105 m/s vα ~ 1.3 x 107 m/s vTe ~ 6 x 107 m/s

Note at B ~ 5 T: vAlfvén ~ 5 x 106 m/s < vα

• CAN IMMEDIATELY DEDUCE:
1) α-PARTICLES MAY HAVE STRONG RESONANT INTERACTION

WITH ALFVEN WAVES.

2) Ti ~ Te since vα >> vTi AND mα >> me THE α-PARTICLES SLOW

PREDOMINANTLY ON ELECTRONS.



Q ~ 5: αααα-EFFECTS ON TAE STABILITY



ALPHA PARTICLE EFFECTS: 
KEY DIMENSIONSLESS PARAMETRS

274-01/rs

●  Three dimensionless parameters will  characterize the
 phys ics  of alpha-particle-driven instabili ties:
 — Alfven Mach Number: Vα/VA(0)
 — Number of Alpha Lamor Radii  (inverse): ρα/a
 — Maximum Alpha Pressure Gradient (sca led): Max R∇β α

Range of Interest
(e.g. ARIES-RS/AT)

ITER JET

Vα/VA(0) ≈ 2.0
ρα/a ≈ 0.02
Max R∇β α 0.03–0.15

1.9
0.016 
0.05

1.6–1.9
~0.1

0.02–0.037



GEOMETRIC EFFECTS ON ALFVEN WAVES



Geometric Effects on Alfven Waves

•  Continuous spectrum, shear Alfvén resonance

•   1D cylinder ωωωω = k  VA (r)

•  Uniform Slab     ωωωω = k   VA
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GEOMETRIC EFFECTS ON ALFVEN WAVES

Add 2D toroidal effects:
• Periodic boundary

conditions for toroidal
mode number, n, and
poloidal mode number, m

• m and m+1 are coupled
and a “gap” is opened in
the otherwise continuous
spectrum



GEOMETRIC EFFECTS ON ALFVEN WAVES

Add elliptical
cross-section effects:

Add triangularity
cross-section effects:

• m and m+2 are now
coupled and an elliptical
“gap” is opened in the
continuous spectrum

• m and m+3 are now
coupled and an
triangularity “gap” is
opened in the continuous
spectrum



GEOMETRIC EFFECTS ON ALFVEN WAVES

Discrete Modes Appear in Gaps in the Continuum:

• Alfvén wave continuum is strongly damped.

• TAE gap-modes are less damped: free energy from ∇∇ ∇∇ pαααα tapped
by wave/particle resonance drive from αααα -particles may
destabilize these modes.

Continuum gap
modes

ωωωω

} }



BASIC ALFVEN EIGENMODE PHYSICS EXTENDS TO
RANGE OF TOROIDAL CONFIGURATIONS

Tokamak:

Spherical Torus:

Stellarator:

• Details of spectra differ but
underlying physics and
modeling tools are
common.



New Alpha Effects Expected on
Scale of Burning Plasma

• Present experiments show alpha transport due to
only a few global modes.

• Smaller value of ρρρραααα/<a> in a Burning Plasma may
lead to a “sea” of resonantly overlapping
unstable modes & possible large alpha transport.



New Alpha Effects Expected on
Scale of Burning Plasma

• Present experiments show alpha transport due to
only a few global modes.

• Smaller value of ra/<a> in a Burning Plasma
should lead to a “sea” of resonantly overlapping
unstable modes & possible large alpha transport.

• Reliable simulations not possible with our
‘standard model’...needs experimental
information in new regime.



Q ~ 10: Strong Non-Linear Coupling &
Steady-State High b Operation



 US ITER Science Interest Driven by Small Size/High Power Density

Fusion Reactors and Power Plants Design Studies
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BURNING PLASMA SYSTEM IS HIGHLY NON-LINEAR...

BASIC COUPLING OF FUSION ALPHA HEATING:



BURNING PLASMA SYSTEM IS HIGHLY NON-LINEAR...

ADD ALPHA DRIVEN TAE MODES:



BURNING PLASMA SYSTEM IS HIGHLY NON-LINEAR...

ADD COMPLEX PHYSICS OF ALPHA DRIVEN TAE MODES:



BURNING PLASMA SYSTEM IS HIGHLY NON-LINEAR...

ADD COMPLEX PHYSICS OF ALPHA DRIVEN TAE MODES:
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MAJOR DISCOVERY OF THE 1990’s:
SHEARED FLOW CAUSES TRANSPORT SUPPRESSION

● Simulations show turbulent
eddies disrupted by strongly
sheared plasma flow

Gyrokinetic Theory Experiment
● Turbulent fluctuations are

suppressed when shearing
rate exceeds growth rate
of most unstable mode

Navratil
 

Gerald Navratil
Verified Prediction of Biglari, Diamond,Terry, Phys. Fluids B 2 1 (1990)



Combination of Turbulence Suppression & Bootstrap Current 
Leads to Steady-State Advanced Tokamak

• Data from JT-60U shows sustained transport barrier
and 100% non-inductive current drive



Thermonuclear Heating

ADVANCED  TOKAMAK  NONLINEAR  TRANSPORT  COUPLINGS 



External

Internal

Auxiliary
Heating

Profiles:
p,T,n,vφ

Anomalous & Neoclassical
heat, particle and v  
diffusion
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Thermonuclear Heating

p, T, n, v  φ

Fast, Blue heat 
and v  transport 
cycle
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External

Internal

Auxiliary
Heating

Auxiliary
Angular Momentum

Profiles:
p,T,n,vφ

Turbulent and Neoclassical 
transport  coefficients χ
   •  Poloidal field dependence
   • Velocity shear stabilization

Anomalous & Neoclassical
heat, particle and v  
diffusion

φ

χ ‘s
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Thermonuclear Heating

p, T, n, v  φ

Fast, Blue heat 
and v  transport 
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couple  magnetic 
and heat diffusion loops
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External

Internal

Transformer source
 of poloidal flux

Auxiliary
Current Drive

Auxiliary
Heating

Auxiliary
Angular Momentum

Neoclassical poloidal
 flux diffusion

Vloop

j Oh

jcd

j
bs

Profiles:
p,T,n,vφ

dp/dr

Conductivity
profile

T

Turbulent and Neoclassical 
transport  coefficients χ
   •  Poloidal field dependence
   • Velocity shear stabilization

Anomalous & Neoclassical
heat, particle and v  
diffusion

φ

σ

Βθ

χ ‘s

p, T, n  

Thermonuclear Heating

p, T, n, v  φ

Bootstrap
Current

Fast, Blue heat 
and v  transport 
cycle

Temperature profiles
couple  magnetic 
and heat diffusion loops

Slow, red magnetic flux diffusion loop

p, T, n, v  φ
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MHD STABILITY IN ITER BURNING PLASMA

• REQUIREMENT FOR HIGH bN > 3 SET BY TWO
CRITICAL EFFECTS:
+ HIGH FUSION POWER DENSITY FOR SMALL SIZE/LOWER COST

+ HIGH BOOTSTRAP CURRENT FRACTION FOR EFFICIENT CURRENT
DRIVE IN STEADY-STATE OPERATION

• TWO PRINCIPAL b-LIMITING MHD MODES:
+ NEOCLASSICAL TEARING MODES – STABILIZED BY LOCAL

ECCD AND/OR CURRENT PROFILE CONTROL

+ RESISTIVE WALL MODES – STABILIZED BY PLASMA ROTATION
AND/OR ACTIVE FEEDBACK CONTROL



New Results Driving AT Interests in ITER:
Internal RWM Control Coils May Allow bN~5
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SUMMARY OF US SCIENCE INTERESTS IN ITER
• Exploration of alpha particle-driven instabilities.
• Self-heated plasmas in reactor-relevant regimes of

small r* (many Larmor orbits) and high bN (plasma
pressure), sustained in near steady state
conditions.

• Exploration of high self-driven current regimes.
• Strongly-coupled physics issues.
• Temperature control and strong exhaust pumping.
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• Exploration of alpha particle-driven instabilities.
• Self-heated plasmas in reactor-relevant regimes of

small r* (many Larmor orbits) and high bN (plasma
pressure), sustained in near steady state
conditions.

• Exploration of high self-driven current regimes.
• Strongly-coupled physics issues.
• Temperature control and strong exhaust pumping.

Flexibility of ITER to explore advances we will
make in fusion science, including diagnostic
systems essential for understanding.




