

	Driver	ICF Target		
		Cryogenic		Non-cryogenic
		Hot spot ignition	Fast ignition	Double shell
X-ray drive	Vacuum hohlraum			Be Cu-Foam Au/Cu
	Dynamic hohlraum			Au DT

Fusion Power Associates Meeting September 27, 2006

Keith Matzen Sandia National Laboratories

GENERAL ATOMICS

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Risk

We are presently studying 3 High Yield target concepts

Indirect drive ICF: a spherical capsule is imploded by z-pinch-produced x-rays contained in a hohlraum

Ignition

Burn

The double-ended hohlraum high yield concept separates capsule, hohlraum, and z-pinch physics issues

A focused effort began in Sept 2005 to create a modern reference design for the double-ended hohlraum (DEH)

1 m 1

PHYSICS OF PLASMAS

VOLUME 6, NUMBER 5

MAY 1999

High yield inertial confinement fusion target design for a *z*-pinch-driven hohlraum*

James H. Hammer,[†] Max Tabak, Scott C. Wilks, John D. Lindl, David S. Bailey, Peter W. Rambo, Arthur Toor, and George B. Zimmerman *Lawrence Livermore National Laboratory, Livermore, California 94551*

John L. Porter, Jr. Sandia National Laboratories, Albuquerque, New Mexico 87185-1191

Key results of initial scoping study:

- 400 MJ yield capsule
- 16 MJ total x-ray energy output from 2 pinches
- 2 x 62 MA currents required with 100 ns rise time
- Pulse shaping via multi-shell z-pinch load design
- Spoke x-ray transmission of > 60% required
- Pinch power balance of 7% required

Integrated 2D simulations with capsule implosion/ignition/burn were not achieved in the 1999 study, mainly due to symmetry issues

2D Lasnex simulations of hohlraum energetics and symmetry have been validated in DEH experiments on Z

- Consistency of z-pinch and hohlraum energetics documented at ± 20% level in flux
- M. Cuneo et al., Phys. Plasmas 2001 G. Bennett et al., Phys. Plasmas 2003 R. Vesey et al., Phys. Plasmas 2003 R. Vesey et al., proc. IFSA 2005
- Spoke transmission measured to be > 70%

Backlit capsules confirm equator/pole **Backlit capsule trajectories** symmetry tuning vs. length confirm hohlraum coupling 2500 Min. transmission radius (μm) 8 4.7-mm capsules Inferred fluence P2 (%) 6 2000 4 2 1500 2.15-mm 0 capsules 1000 -2 -4 500 0 -8 20 25 30 35 0 5 10 15 1.50 1.55 1.60 1.65 1.70 1.75 1.80 Time after peak Tprim (ns) Secondary hohlraum length / radius Sandia National Laboratories

Baseline DEH capsule uses a 0.2% Cu-doped Be ablator, absorbing 1.2 MJ of x-rays, yielding 520 MJ

DEH capsule design

Outer radius = 2.65 mm

Capsule	NIF GDBE	DEH
Ablator thickness (µm)	160	190
DT fuel thickness (µm)	80	280
Absorbed energy (MJ)	0.14	1.21
Yield (MJ)	13	520
Peak pr (g/cm ²)	1.9	3.1
Implosion velocity (cm/µs)	37.0	26.0
α _{if}	0.93	0.73
Fuel fraction at >1.5 $lpha_{ m if}$	0.06	0.07
Drive pressure (MB)	160	60
Inflight aspect ratio	19	35
Fuel KE margin	33%	29%
Hot spot convergence ratio	36	35

Although not optimized, the 220 eV DEH capsule robustness compares well with the NIF GDBe capsule

Work is underway to define a more robust 220 eV capsule:

- radially-dependent level of Cu dopant in Be shell
- optimization of capsule AND pulse shape

2D Lasnex hohlraum/capsule simulations capture the essential physics of radiation coupling and symmetry

Low-mode symmetry control in the "baseline" hohlraum configuration is not adequate for ignition capsules

Similar level of P₄ asymmetry measured in foot-like Z experiments

Secondary entrance foams and P₄ shields give low time-dependent P₂, P₄, P₆, and P₈ asymmetry

Secondary entrance foams and P₄ shields have resulted in highly symmetric capsule implosions that yield nearly 500 MJ

Initial P₄ control set by shield angular range, duration set by density ($\rho\Delta x$) Resolution convergence studies are underway

Hohlraum / capsule simulation summary

2 main goals of hohlraum/capsule simulations have been met:

Demonstrated ignition and burn in best available 2D models

Developed strategy to control time-dependent symmetry

Identified a new technique for mode-selective symmetry control with small angular range shields

 P_4 is tunable with negligible effect on P_6 and P_8 at capsule

Solutions exist with 2 shields per side that should tune P_4 with exactly zero effect on P_2 , P_6 , and P_8 (to be tested)

Work is in progress (Herrmann) to define more robust capsule designs

Concept separates z-pinch from capsule – design z-pinch load in parallel

Each pinch should provide 9 MJ total, with 0.5 MJ foot pulse 20-25 ns prior to peak Design work is in process with Alegra (2D & 3D) and Lasnex (1D & 2D)...

Recent z-pinch simulations produced an x-ray pulse shape capable of igniting a capsule

Load design has evolved to provide good foot – shoulder – peak timing The total x-ray energy output is more than adequate at ~10 MJ

Radiation pulse features are produced by shock heating when z-pinch components collide

Z-Pinch density $\rho(r,z)$

Amplitude of radiation pulse feature produced by shock event depends on kinetic energy flux of impactor and opacity (optical depth).

We have made significant progress in power scaling, reproducibility, and pulse shaping of wire array z-pinches

μm resolution radiography provides new opportunities for capsule implosion studies

Progress in pulsed-power hot-spot ignition

- Integrated LASNEX hohlraum/capsule simulations predict ignition and burn in double-ended hohlraum configuration
- Achieved dramatic advances in our ability to experimentally control the radiation output of Z-pinches
- Designed power pulse shapes for high yield capsules through z-pinch engineering with ALEGRA-HEDP
- Record x-ray driven D-D neutron yields with Be capsules in dynamic hohlraums Be capsule imploded with Dynamic Hohlraum

1D yield 520 MJ 2D yield 470 MJ (currently)

Radiation pulse shaping

We are using our experience from several science campaigns to support the National ICF Program

- Measured Be melt pressure
- Delayed ZR shutdown to enable diamond melt experiments
- Fielded fill tube hydro experiments (collaboration with GA and LLNL)
- Performed experiments with LANL and LLNL on Omega
- Developing NIF cryogenic target system x-ray blast shield
- Assessing EMP shielding for NIF diagnostics

Recent experiments used Z's unique capabilities to assess the effects of fill tubes on capsules

Optical image

- Fill tube calculations are some of the most challenging calculations that have been done in support of inertial confinement fusion ignition
- Need data to validate the computational tools used to simulate fill tubes
- Capability to do experiments on NIF-scale objects coupled with high resolution radiography allows high utility experiments

ZR: Refurbishment of the **Z** Pulsed Power

Generator

Some assembly is required

The Z-Petawatt Laser System will provide new capability for radiography and fast ignition research

- Terawatt-class Z-Beamlet provides 1-10 keV x-ray backlighting on Z
- Petawatt-class enhancement allows new radiography options (X-rays over 10-100 keV; protons) and Fast Ignitor research on Z
- System operational in 2007 at 500 J / 500 fs with Nova gratings, ramping up to 2 kJ in 5-10ps

Petawatt Pulse Compressor

