ICF and IFE Research at the Laboratory for Laser Energetics

 β -layered DT Cryogenic Target

OMEGA EP

R. L. McCrory CEO and Director University of Rochester Laboratory for Laser Energetics

Fusion Power Associates Washington, D. C. 27 September 2006

Summary

The Laboratory for Laser Energetics is validating concepts for ICF ignition

- The baseline direct-drive ignition target for the NIF is a thick cryogenic DT shell enclosed by a thin plastic shell.
- DT ice layer roughness <1- μ m rms are routinely achieved.
- Ignition-scaled cryogenic D₂ and DT implosions are underway.
- Polar direct-drive (PDD) will allow direct-drive ignition experiments while NIF is configured for indirect drive.
- A new high-energy petawatt laser system—OMEGA EP is under construction at LLE (completion April 2008).
- Integrated fast-ignition experiments will begin in 2009.
- National Ignition Campaign (NIC) success is a prerequisite for Inertial Fusion Energy (IFE).

ICF physics validation is required for IFE.

Symmetric Drive

The NIF symmetric direct-drive point design is a thick DT-ice layer enclosed by a thin CH shell

OMEGA cryogenic targets are energy scaled from the NIF symmetric direct-drive point design

OMEGA Cryogenic Capsules

A reliable cryogenic fuel system is required for IFE

UR

β -layered 50:50 DT cryogenic targets have been imploded on OMEGA

- β -layered 50:50 DT cryogenic targets have ice roughness nonuniformity <1- μ m rms.
- Progress in IR layering of D₂ cryogenic targets have led to ice roughness nonuniformity <2- μ m rms.
- Diagnostics show that the ice uniformity is maintained at shot time.
- DT and D₂ implosions allow different diagnostics to interrogate target performance and improve hydrodynamic simulations.
- Peak areal densities are approaching 150 mg/cm².

Cryogenic target implosions on OMEGA will validate direct-drive target physics and numerical simulations.

We have produced four DT (45:55) ice layers with an ice roughness less than 1- μ m rms for all modes, in three separate capsules

The cryogenic DT layer roughness exceed the NIF direct-drive ignition specification

Both x-ray and neutron spectroscopy can be used to measure the ICF target core conditions¹

- The self-emission spectrum at peak compression is exponential given by the electron temperature filtered by the areal density of the compressed shell.
- The emergent x-ray spectrum diagnoses the inner hot-spot electron temperature kT_e and shell areal density ρR_{shell} :

$$e^{-\mu \rho R_{shell}} e^{-E/kT_{hot}}$$
$$\mu(E,\rho,T) = \frac{0.44 \rho_{shell}}{(E/keV)^3 (kT_{shell}/keV)^{1/2}}$$

where $\mu(E)$ is the mass absorption coefficient.

¹F. J. Marshall et al., Phys. Rev. E. <u>49</u>, 4381 (1994).

X-ray spectra from DT cryo shots are compared to 1-D simulations to infer the areal density

• There is evidence that the compressed fuel is being preheated during the laser pulse.

The Lawson criterion is estimated from the areal density and disassembly time

- The disassembly time is ~100 ps.
- The density is given by the areal density divided by the calculated shell thickness at peak compression.

Fuel thickness from x-ray data and simulations: $\Delta R < 50 \ \mu m$ Mass density $\rho = 25$ to 50 g/cm³

- The Lawson criterion is 6 ${\sim}12\times10^{20}~\text{s/m}^3.$
- The $n_e \tau T$ is 3 ~20 × 10²⁰ s keV/m³ depending on whether the hot spot or shell temperature is used.

Polar direct drive (PDD) can achieve ignition while the NIF is in the x-ray-drive configuration

The latest NIF-scale PDD simulations ignite and achieve significant gain

Simulation type	Incident energy	Absorbed energy	Gain	
LILAC (1-D)	1.0 MJ	0.87 MJ	33	
DRACO (2-D) PDD	1.3 MJ	1.0 MJ	20	

Cryogenic DT wetted CH foam

Near peak compression, 8.12 ns

Direct-drive-ignition scaled performance will be validated over the next two years

Nuclear diagnostics are being developed for the NIF on high-yield OMEGA experiments

In 2005, the suite of the NIF nuclear diagnostics was defined

 ✓ PROTEX: primary DT neutron yield
 ✓ neutron time of flight (nTOF): D₂, DT yield, T_i, ρR
 ✓ neutron activation diagnostic (NAD): DT yield, ρR

UR 🔬

- bang time/reaction history diagnostic
- magnetic recoil spectrometer: ρR , DT yield, T_i
- neutron imaging system

A multilab effort to specify system design requirements (SDR), and develop and integrate diagnostics on the NIF is in progress.

The neutron activation diagnostic (NAD) will measure primary and tertiary neutron yields on OMEGA and the NIF

- NAD will consist of copper and carbon activation.
- Copper activation* will measure the primary DT neutron yield.

⁶³ Cu (n,2n) ⁶² Cu	E _n > 10.9 MeV
$62Cu \rightarrow 62Ni + e^+$	(T _{1/2} = 9.8 min)
$e^+ + e^- ightarrow 2\gamma$	(0.511 MeV)

• Carbon activation** will measure the tertiary neutron yield.

¹² C (n, 2n) ¹¹ Cu	E _n > 22 MeV
$11C \rightarrow 11B + e^+$	(T _{1/2} = 20.39 min)
${ m e}^+ + { m e}^- o 2\gamma$	(0.511 MeV)

• Cu and C activations will use very similar counting systems and the same retraction system.

*R. A. Lerche et al., LLNL 1976 Annual Report

^{**}V. Yu. Glebov *et al.*, RSI <u>74</u>, 1717 (2003).

CEA developed penumbral- and ring-aperture neutron imaging on OMEGA

L. Disdier et al., RSI 75, 2134 (2004).

The OMEGA EP laser system will be used to backlight cryogenic implosions and study fast ignition

• Each beam duration can be as short as 1 ps at reduced energy (grating damage and *B*-integral)

OMEGA EP will be completed in FY08.

• Beam 2 can produce 2.6 kJ in 10 ps when propagating on a separate path

OMEGA EP is progressing on schedule

OMEGA EP Laser Bay (Sept. 2006)

Fast Ignition

OMEGA EP will test two concepts for fast ignition; two techniques have been developed to reduce the distance that an electron beam must traverse

Integrated cryogenic fast-ignition experiments will begin in FY09

Streaked optical pyrometry (SOP) is used to observe the cone filling with plasma

The 70° cone shows a clean shock-breakout signal at the tip of the cone

UR LLE

• Shot 38548, 1-ns pulse, 18 kJ, 48 beams, 24-μm CH shell

Low-adiabat, low-V_i experiments with CH targets are used to study fast-ignition fuel assemblies

The measured areal densities (ρR) are the largest ever for laser-driven implosions

Areal densities	ρ R (g/cm²)
$\left< ho_{m{R}} ight>_{m{p}}$ experiment DD fill, 25, 33 atm	0.13
$\left< ho {m R} ight>_{m ho}$ experiment DHe $_3$ fill, 25, 33 atm	0.14
$\left< ho {m R} ight>_{m n}$ simulation averaged over NTD	0.145
$\langle ho {m R} angle_{m max}$ simulation	0.28

X-ray image shows uniform core.

Summary/Conclusions

The Laboratory for Laser Energetics is validating concepts for ICF ignition

- The baseline direct-drive ignition target for the NIF is a thick cryogenic DT shell enclosed by a thin plastic shell.
- DT ice layer roughness <1- μ m rms are routinely achieved.
- Ignition-scaled cryogenic D₂ and DT implosions are underway.
- Polar direct-drive (PDD) will allow direct-drive ignition experiments while NIF is configured for indirect drive.
- A new high-energy petawatt laser system—OMEGA EP is under construction at LLE (completion April 2008).
- Integrated fast-ignition experiments will begin in 2009.
- National Ignition Campaign (NIC) success is a prerequisite for Inertial Fusion Energy (IFE).

ICF physics validation is required for IFE.