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HAPL Meeting, Madison Wisconsin
Oct 22 -23, 2008

54 participants,  23 institutions,  10 students

Advances in Laser Fusion Energy
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Fusion Energy with Lasers and Direct Drive 

Electricity
or Hydrogen

Generator

Reaction
chamber

Spherical pellet

Pellet
factory

Array
of

Lasers

Final optics



3

Major Advances this past year 

Direct Drive Target Designs:   

KrF Lasers:   

DPPSL Lasers:  discussed in LIFE talks

Final Optics: 

Target engagement:  

First Wall:  
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Advance #1: New Direct Drive Designs.   
Power plant gains, with much smaller laser 
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Shock Ignition predicts comparable gains as 
Fast Ignition… without the complexities

Gain for Fusion Energy
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References for gain curves

Fast Ignition:
Betti et al., Phys. Plasmas 13, 100703 (2006).

Shock Ignition Gain curves:
Schmitt, et al, 2008 TOFE

Shock Ignition Concept
Betti et al, Phys. Rev. Lett. 98, 155001 (2007).

FTF Class:
Colombant et al., Phys. Plasmas 14 056317 (2007).

Conventional Direct Drive:
Bodner et al., IAEA Madrid meeting, June 2000.
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Electra Krypton Fluoride (KrF) Laser
- electron beam pumped gas laser

Electra Status to date
260,000 laser pulses
35,000 pulses continuous
500,000 e-beam pulses
30 -700 Joules
1 Hz to 5 Hz
7% efficiency (based on component R&D)
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Advance #2:  KrF Laser Pulsed Power.
Solid state system demonstrates 1 M shots +

Based on Commercial switches (component life > 300 M shots)

Marx + PFL + Magnetic Switch (same as full scale driver)

Marx: 1 M shots continuous at 10 Hz, > 80% efficiency

Attractive cost: < $ 2 M for Electra (15 kJ)
Malcom McGeoch (PLEX)

Steve Gldden (APP)
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Advance #3: KrF Foil Cooling.
Array of jets cools foil, maintains laser quality 
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Said Abdel Kahlik (Georgia Tech)
Dennis Sadlowski (Georgia Tech)

Kevin Schoonover (SCI)
Matt Wolford (NRL)

Frank Hegeler (NRL/CTI)
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Advance #4: KrF Foil Support.
"Scalloped" hibachi reduces stress in foil 4 x
Module pressure tested to 1.4 M cycles 
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Existing 5 153585 40000 3.84 25000 6.14
New 50 17466 40000 0.44 25000 0.70
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Tom Albert (CTI)
A.E. Robson (NRL)
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Advance #5: Grazing Metal Mirror (Final Optic)
Developing high cycle, high damage limit coating

10 M shots at
3.5 J/cm2

(not a limit!)

Mark Tillack, UCSD
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Advance #6:  Dielectric Mirror.
Developed mirror that survives predicted dpa

Al2O3 / HfO2 mirror stack
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lifetime
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The "key"
Match irradiation-induced dimensional
changes in substrate and mirror layers

Lance Snead (ORNL)
Tom Lehecka (Penn State)
Mohamed Sawan (Wisconsin)
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Advance #7: Target Engagement. 
Bench test engages target within 42 um. Need ∼20
August 2007
150 µm RMS error
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42 µm RMS error

Lane Carlson (UCSD)
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Advance #8: Chamber First wall material. 
First "Nano-Engineered" Tungsten experiments encouraging
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Sam Zenobia (Wisconsin)
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Major Advances this past year 

Direct Drive Target Designs:  suggest gains > 140 @ < 1 MJ

KrF Lasers:   Pulsed Power, Foil Cooling, Foil Support

DPPSL Lasers:  Discussed in LIFE talks

Final Optics: GIMMS:  high cycle, high damage threshold
Dielectric Mirrors:  Survive predicted dpa

Target engagement:  almost met accuracy requirements

First Wall:  Nano Engineered tungsten experiments
encouraging, may light path for solid wall
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The Fusion Test Facility (FTF)

Laser energy:    ∼ 500 kJ
Rep-Rate ∼ 5 Hz
Fusion power:  ∼ 100-150 MW

28 kJ KrF laser Amp
1 of 22, (2 spares)

Laser Beam Ducts

Reaction
Chamber
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Objectives of the FTF

Develop key components, demonstrate they work 
together with the required precision and durability

Platform to evaluate and optimize pellet physics

Develop materials and full scale chamber/blanket 
components for a fusion power plant.  

Provide operational experience and develop techniques 
for power plants.

Operating ∼ 2022
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The Vision…A plentiful, safe, clean energy source

A 100 ton (4200 Cu ft) COAL hopper runs a 1 GWe Power Plant for 10 min 



22

The Vision…A plentiful, safe, clean energy source

A 100 ton (4200 Cu ft) COAL hopper runs a 1 GWe Power Plant for 10 min 

Same hopper filled with IFE targets: runs a 1 GWe Power Plant for 7 years
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