A Pilot Plant: The Fastest Path to Net Electricity from Fusion

Fusion Power Associates
Thirty-year Anniversary Meeting and Symposium
Rob Goldston
December 3, 2009
The MFE Program Needs to Move Faster

Situation

- Need to demonstrate the practicality of MFE soon.
- But: ITER’s earliest-case first plasma is in 2018.
 Earliest-case $Q = 10, 300 – 500$ seconds in 2028.

Implications

⇒ Building a Component Test Facility and *then* building Demo to produce net electricity may not be the fastest path.

⇒ Consider construction of a device to make *net electricity* as soon as a technically sound design can be developed.
 - $Q_{\text{eng}} > 1 \equiv \text{“Pilot Plant”},$ making net electricity.
 - Pilot Plant would also perform the component testing mission.
Three Key Science Needs for a Technically Sound MFE Pilot Plant Design

- Plasma Performance (Including ITER + Alternates)
- Integrated Plasma Material Interface
- Neutron Material Interactions

Themes from FESAC Priorities, Gaps and Opportunities Report (ReNeW Themes 1, 2 & 5 included in Plasma Performance)
What Science is Needed for a Technically Sound MFE Pilot Plant Design? (1)

Plasma Performance

• Scaling of confinement, operating limits and sustainment in non-inductive plasmas
• Confinement scaling to relevant ρ^* and ν^*
• Alpha heating physics
• Scaling information at low A
 • Power plant maintenance most credible at low A.
• Scaling information for stellarators
 • Stellarators most credible for disruption avoidance, sustainment with low recirculating power
• Are there faster/better/cheaper alternatives?
 • ICCs
Example: Confinement Scaling to ITER Long-Pulse “Hybrid” Mode Uncertain

Projection to CTF, Pilot Plant or Demo is not settled. Latest matched DIII-D + JET results look better on these axes, but still do not give needed favorable “Gyro-Bohm” scaling of B_τ.
What Science is Needed for a Technically Sound MFE Pilot Plant Design? (2)

Integrated Plasma-Materials Interface

- High heat and particle flux and fluence
 - What divertor designs work at needed power & duty factor?
 - What materials work at needed power & duty factor?
- Tritium retention
 - How to remove tritium in continuous operation?
 - All plasma-facing components (PFCs) must operate very hot.
- Dust production
 - How to remove dust in continuous operation?
- Practical experience with high-pressure He-cooled PFCs
- Practical experience with liquid metal PFCs
- Effects of ELMs and high-energy disruptions
 - Major issue for blanket / first wall survival in tokamaks & STs.

Significant synergy with many IFE concepts.
Pilot Plant PMI Challenges Similar to PMI Challenges Projected for CTF

• Heat flux, pulse length, duty factor for Pilot Plant (PP) ~ CTF
 - CTF: 2x ITER’s heat flux Demo: 4x ITER’s heat flux
 - CTF: 2 week pulses Demo: Few month pulses
 - CTF: 30% duty factor Demo: up to ~70% duty factor

• Real-time dust removal, tritium inventory control and component lifetime issues are challenging due to CTF, PP & Demo missions
 - Must remove dust and tritium in real time: CTF, PP, Demo
 - Need to demonstrate PFC solution that allows long periods of high power operation between change-outs, including off-normal events: CTF, PP, Demo
 - ITER with few % duty factor, plans to change out divertors after ~ 0.08 full-power years – at much lower power density.

• Many solutions used on ITER are not CTF, PP or Demo relevant.
 - Beryllium first wall
 - Stainless-steel vacuum vessel
 - Water cooled ~200C PFCs
 - Intermittent dust collection and tritium clean-up

CTF, PP or Demo: All Would Need New PMI Solutions.
What Science is Needed for a Technically Sound MFE Pilot Plant Design? (3)

• A strong blanket technology program is required for CTF, PP or Demo.
• Design of CTF, PP or Demo would be informed by a powerful point neutron source such as IFMIF (or MTS?). For example:
 • Vacuum vessel design depends on properties of hot main blankets: electrical conduction paths, structural integrity, size, services (coolant, T purge fluid).
 • Hot main blanket design depends on material properties w/14 MeV neutrons.
 • Same logic holds for many other components, e.g., divertors, antennas.
 • Point neutron source needed to develop materials for test blankets.
• Tritium breeding uncertainties can be mitigated by Li isotopic mix.
 • Tritium cycle can be confirmed in Pilot Plant.
• ReNeW on this topic:
 A later possibility might be to include a provision for materials irradiation capabilities as part of a large-scale nuclear facility such as the proposed Fusion Nuclear Science Facility. However, it must be emphasized that bulk material property data from a fusion relevant neutron source would inform the design, construction and licensing of such facilities.

A point neutron source has high synergy with many IFE concepts.
Facilities to Contribute to a Technically Sound MFE Pilot Plant Design

Plasma Performance
Existing Tokamaks, Asian S/C Tokamaks, ITER, NSTX, MAST, LHD, W7-X, (NCSX?)

Integrated PMI
Existing Tokamaks, Asian S/C Tokamaks, ITER, NSTX, MAST, Test Stands, Integrated PMI Facility
(Significant synergy with IFE)

Neutron-Materials
Fission Reactors, Ion Beams, Blanket Test Stands, IFMIF (or MTS?)
(Strong synergy with IFE)
Roles of Major Facilities

- **Plasma Performance**
 - ITER for ρ^* scaling, α–particle heating
 - Existing tokamaks, Asian S/C tokamaks for AT pilot plant option
 - LHD, W7-X, (NCSX?) at relevant β and $\nu*$ for stellarator pilot plant option
 - NSTX, MAST at relevant β and $\nu*$ for low aspect ratio pilot plant option

- **Integrated Plasma-Material Interface**
 - Existing tokamaks, Asian S/C tokamaks, NSTX-U, MAST, test stands, for initial tests of new PFC geometries and materials.
 - ITER for effects of high-energy ELMs and disruptions.
 - Long-pulse, hot walls, high-heat-flux DD confinement facility for integrated power and particle handling studies. Develops solutions for divertor lifetime, tritium retention, dust clean-up, long-pulse disruption avoidance.

- **Neutron Material Interactions**
 - Fission reactors, ion beams to sieve candidate materials.
 - Blanket test stands to develop required technologies.
 - IFMIF (or MTS?) with correct He/dpa to investigate materials physics at high fluence; qualify materials to be used in PP design, then test blankets.
Is a Pilot Plant Smaller than a Demo?

- Assume conservatively that recirculating power, P_{rec}, is constant from Pilot Plant (PP) to Demo
- Assume recirculating fraction in Demo is 20%; $Q_{\text{eng}} = 5$
- Assume Pilot Plant $Q_{\text{eng}} = 1.2$
- $P_{e,\text{gross,Demo}} = 5 P_{\text{rec}}$; $P_{e,\text{gross,PP}} = 1.2 P_{\text{rec}}$
- $P_{e,\text{gross,PP}} = 0.24 P_{e,\text{gross,Demo}}$
- Assume Demo-level B & $\beta \Rightarrow R^3 \propto P_{\text{fus}} \propto P_{e,\text{gross}}$

 Assume adequate confinement
- $P_{\text{fus,PP}} = 0.24 P_{\text{fus,Demo}}$; $R_{\text{PP}} = 0.62 R_{\text{Demo}}$
- Neutron wall loading in Pilot Plant $= 0.62$ Demo neutron wall loading

Obviously there are other factors (e.g., neutron m.f.p.). On the other hand $P_{\text{rec}} = \text{constant}$ is conservative. Initial looks at Tokamak, ST, Stellarator support $R_{\text{PP}} \sim 0.6 R_{\text{Demo}}$
Spreadsheet Pilot Plants Assuming High Confinement are Encouraging

• **Tokamak**
 - \(R/a = 4.0m/1.0m, B_0 = 6T, I_p = 8MA \)
 - \(H = 1.5, P_{fus} = 520MW, Q_p = 10, Q_{eng} \approx 1 \)

• **ST**
 - \(R/a = 1.5m/0.9m, B_0 = 2.2T, I_p = 15 MA \)
 - \(H = 1.7, P_{fus} = 500MW, Q_p = 25, Q_{eng} \approx 1 \)

• **Stellarator**
 - \(R/<a> = 4.5m/1.0m, B_0 = 5.7T \)
 - \(H_{ISS04} = 2, P_{fus} = 470MW, Q_p = 40, Q_{eng} \approx 4 \)

These spreadsheet analyses are only very first looks. Engineering scaled simply from ARIES studies.
Much More Analysis is Required

• **What would an MFE Pilot Plant look like?**
 – Advanced Tokamak (Superconducting for $Q_{\text{eng}} > 1$)
 – Spherical Torus (Most readily maintained configuration)
 – Stellarator (Lowest recirculating power, no disruptions)

 Any design should prototype Demo maintenance approach.

• **What near-term program of Modeling, Test Stand R&D, New Facilities is necessary to support a Pilot Plant?**
 – Plasma performance
 – Integrated plasma material interface
 – Neutron interactive materials
A Pilot Plant is an Exciting Goal

• We can explain it to our sponsors and the public
 – We have a plan to make net electricity soon.
 – This will put fusion “on the map” as an energy option.

• It would culminate the key FESAC Themes
 – Creating Predictable High-Performance Steady-State Plasmas
 – Taming the Plasma-Material Interface
 – Harnessing Fusion Power

• ARIES + Fusion Community Pilot Plant Study?
 – What would a tokamak, ST or stellarator Pilot Plant look like?
 – What supporting program is needed for a technically sound design?
 – A similar IFE Pilot Plant study should be carried out in parallel.