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LIFE power flow for a hotspot pure fusion system
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Laser diodes and He gas cooling enable a NIF-like 
architecture to meet LIFE high rep rate high efficiency 
requirements

These technologies have been developed as part of the Mercury 
Project and allows ultra-compact laser architectures

High Speed Gas CoolingHigh Power Diode Arrays

3 W/cm2 cooling (average)100 kW peak power
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20 m

Advanced lasers and modular systems 
make the facility small and enable 
rapid construction and maintenance

• Modular (advanced 
architecture) lasers that 
could be factory built

• Separate first wall & 
blanket modules for 
rapid & independent 
replacement
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Injection demonstration at GA to simulate the full length of a 
LIFE fueling system have demonstrated many objectives

•   Injection at 6 Hz (burst mode) 400 m/sec to 200 µm demonstrated
•   Additional R&D needed for Cryogenic targets and >10 Hz
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• Injection at 6 Hz and 400 m/s to 5 mm accuracy demonstrated
• Additional R&D needed for cryogenic targets and higher accuracy





Target fratricide and heating during 
injection are manageable

• DT ice preheat of 100 mK is deemed acceptable (and conservative):
—Target injector parameters satisfy fratricide constraints:

– Injector nozzle ~15 m from chamber center
– Two mean free paths of neutron shielding (~15 cm) on shutter
– 250 m/s injection velocity

• Hohlraum acts as thermal insulator to protect capsule during injection:
—Radiation heating to capsule: 

– Polyimide transmits in the IR
– Radiation shield (Al/polyimide/Al) gives 99% reflectivity

—Convective heating of polyimide window dominates:
– Heat transfer coefficient ~8 W/m2-K at window edge
– Window heats to ~80% of decomposition temperature

• Several options for reducing target injection risk:
—Higher velocities / shorter distances  reduced heating time
—Tailored target output  reduced chamber gas density
— Injection with cool gas plume  reduced ∆T and h
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X-rays and ion fluxes are simply mitigated
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Photon energy [keV]

Chamber fill gas can attenuate 
x-rays and ions to protect the 
first wall

Parameter Value

Target yield 120 MJ
Repetition rate 15 Hz
Fusion power 1800 MW

Chamber radius 4 m
X-rays 14 MJ (12%)
Ions 12 MJ (10%)
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2.5 µg/cm3 Xe

4 m

Thermally robust targets allow for a protective 
chamber gas to absorb all ions and 90% of x-rays  
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Protective background gas re-radiates 
ion and x-ray energy over a timescale 
thermal conduction can effectively 
remove it



Chamber conditions must support laser 
beam propagation for the next shot

• Base case design is robust with respect to chamber design:
— 120 MJ fusion yield @ 15 Hz
— 4 m radius
— 2.5 µg/cc xenon

• Chamber design trades-off:
— First wall protection  stop ions & attenuate x-rays in Xe/Kr 
— Target heating during injection  dominated by IR from 1st wall
— Laser beam propagation  ~1% inverse Bremsstrahlung loss

• System optimization is likely to result in smaller chambers:
— Beam propagation with increased gas densities
— Gas cocktails for better x-ray attenuation
— Tailored target output for fewer x-rays



Chamber designed for rapid replacement
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Modular chambers have independent first walls 
that can be replaced without moving the blanket

First wall 
module

Blanket
module

Coolant injection 
& extraction plena
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• LIFE systems will be highly modular and more
compact than NIF

• The high degree of separability inherent to IFE 
translates into a significant development path 
advantage

• LIFE could be fielded as a pure fusion plant or as a 
hybrid to complete waste-related missions

• A pilot plant could be operational a decade after NIF 
ignition and that a commercial power plant could be 
running a decade after that

Summary
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