

LIFE: Laser Inertial Fusion-based Energy

Presented by Jeff Latkowski LIFE Chief Engineer

Fusion Power Associates December 3rd, 2009

Laser inertial fusion energy is highly separable

Next-generation laser technology could result in a very compact LIFE engine

LIFE power flow for a hotspot pure fusion system

LIFE is a credible extension of NIF, ignition on NIF and ongoing developments in the nuclear industry

- NIF-like fusion performance
- NIF-based lasers
- Mass produced NIF-like targets
- Target injection and engagement
- Fusion environment
 - Protecting first wall
 - Laser beam propagation

Diodes are significantly more energy efficient than flashlamps

400 W average power electrical-optical efficiency

30 kW average power electrical-optical efficiency

Laser diodes and helium gas cooling enable NIF-like architecture to meet LIFE requirements

100 kW peak power

3 W/cm² cooling (average)

These technologies have been developed as part of the Mercury Project

Diodes are experiencing aggressive learning

Advanced lasers and modular systems make the facility small and enable rapid construction and maintenance

- Modular (advanced architecture) lasers that could be factory built
- Separate first wall & blanket modules for rapid & independent replacement

Targets can be produced very cost effectively

- Targets will be made with technologies from high-volume manufacturing industries
 - Low-cost materials: pennies per component
 - Silicon mandrel: Ball bearing technology
 - High-density carbon capsules: CH4 pyrolysis
 - High-Z: <\$.01 per target</p>
 - Low-Z foam: SiO₂, Carbon
 - Automated fabrication/ assembly processes:
 - Laser drilling/machining of capsules
 - Stamped cones and hohlraums
 - Robotic assembly and packaging

Examples of mass produced components that are comparable to LIFE requirements in volume, precision, and cost

	LIFE	Lego ®	Mil Spec Bullet	Aluminum Cans
Number/year	3–6 x 10 ⁸	1.8 x 10 ⁹	9 x 10 ⁹	1 x 10 ¹¹
Dimensional tolerance	± 50 μ m	± 10 μ m	± 40 μ m	± 100 μ m
Cost	\$0.20-0.30	\$0.06	\$0.21	\$0.012

Bullets are an interesting comparison; they are multi-component, multi-materials, that tolerate high acceleration and high velocity

Injection demonstration at GA to simulate the full length of a LIFE fueling system have demonstrated many objectives

Injection at 6 Hz and 400 m/s to 5 mm accuracy demonstrated
Additional R&D needed for cryogenic targets and higher accuracy

LIFE targeting requirement is similar to that of other demanding systems

~1 µrad angular precision (~10 cm, 100 km)

Developing an integrated target injection, in-flight tracking and beam engagement system is a key technical challenge

Target fratricide and heating during injection are manageable

- DT ice preheat of 100 mK is deemed acceptable (and conservative):
 - —Target injector parameters satisfy fratricide constraints:
 - Injector nozzle ~15 m from chamber center
 - Two mean free paths of neutron shielding (~15 cm) on shutter
 - 250 m/s injection velocity
- Hohlraum acts as thermal insulator to protect capsule during injection:
 - -Radiation heating to capsule:
 - Polyimide transmits in the IR
 - Radiation shield (Al/polyimide/Al) gives 99% reflectivity
 - -Convective heating of polyimide window dominates:
 - Heat transfer coefficient ~8 W/m²-K at window edge
 - Window heats to ~80% of decomposition temperature
- Several options for reducing target injection risk:
 - -Higher velocities / shorter distances \rightarrow reduced heating time
 - -Tailored target output \rightarrow reduced chamber gas density
 - —Injection with cool gas plume \rightarrow reduced ΔT and h

Laser inertial fusion energy is highly separable

X-rays and ion fluxes are simply mitigated

Parameter	Value	
Target yield	120 MJ	
Repetition rate	15 Hz	
Fusion power	1800 MW	
Chamber radius	4 m	
X-rays	14 MJ (12%)	
lons	12 MJ (10%)	

Chamber fill gas can attenuate x-rays and ions to protect the first wall

Thermally robust targets allow for a protective chamber gas to absorb all ions and 90% of x-rays

Protective background gas re-radiates ion and x-ray energy over a timescale thermal conduction can effectively remove it

Chamber conditions must support laser beam propagation for the next shot

- Base case design is robust with respect to chamber design:
 - 120 MJ fusion yield @ 15 Hz
 - 4 m radius
 - 2.5 μg/cc xenon
- Chamber design trades-off:
 - First wall protection \rightarrow stop ions & attenuate x-rays in Xe/Kr
 - Target heating during injection \rightarrow dominated by IR from 1st wall
 - Laser beam propagation \rightarrow ~1% inverse Bremsstrahlung loss
- System optimization is likely to result in smaller chambers:
 - Beam propagation with increased gas densities
 - Gas cocktails for better x-ray attenuation
 - Tailored target output for fewer x-rays

Chamber designed for rapid replacement

Modular chambers have independent first walls that can be replaced without moving the blanket

LIFE final optic system

A fused silica Fresnel is an attractive option for the final optic

Neutron-irradiated SiO₂ can be annealed to remove color centers

Molecular dynamics simulations confirm SiO₂ self-annealing

Thin Fresnel technology has been demonstrated at large aperture

LIFE is a credible extension of NIF, ignition on NIF and ongoing developments in the nuclear industry

- NIF-like fusion performance
- NIF-based lasers
- Mass produced NIF-like targets
- Target injection and engagement
- Fusion environment
 - Protecting first wall
 - Laser beam propagation

Laser inertial fusion energy is highly separable

Different LIFE blankets provide unique energy systems

LIFE blankets options

- Li-based salt to make electricity and produce T for other LIFE-based missions (pure fusionbase case)
- Coolant with U, DU or TH pebbles for Once-Through Closed Energy Production (> 99% burn-up)
- Coolant with fertile or fissile pebbles for Once-Through Closed Waste Burning (> 99% burn-up)
 — SNF
 — WG – Pu, HEU

Summary

- LIFE systems will be highly modular and more compact than NIF
- The high degree of separability inherent to IFE translates into a significant development path advantage
- LIFE could be fielded as a pure fusion plant or as a hybrid to complete waste-related missions
- A pilot plant could be operational a decade after NIF ignition and that a commercial power plant could be running a decade after that

Laser Inertial Fusion Energy