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Laser inertial fusion energy is highly separable
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Next-generation laser technology could
result in a very compact LIFE engine
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LIFE power flow for a hotspot pure fusion system

Laser
2.8 MJ (lo),
2.3 MJ (2o0) @ 15 Hz T
14% n laser fusion 2168 MW
7y thermal
Power cycle
n=61%
303 MWe
(27% recirc) 1329 MWe 839 MWth
Process heat
25 MWe 1001 MWe
Pumps / To
aux. power grid




LIFE is a credible extension of NIF, ignition on NIF
and ongoing developments in the nuclear industry

 NIF-like fusion performance

« NIF-based lasers

« Mass produced NIF-like targets
 Target injection and engagement

 Fusion environment
— Protecting first wall
— Laser beam propagation
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Diodes are significantly more
energy efficient than flashlamps

Flashlamps
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400 W average power 30 kW average power
electrical-optical efficiency electrical-optical efficiency
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Laser diodes and helium gas cooling enable NIF-like
architecture to meet LIFE requirements

" High speed gas cooling "

100 kW peak power 3 W/cm? cooling (average)

These technologies have been developed as
part of the Mercury Project
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Diodes are experiencing aggressive learning

Continuous wave diode bar : : :
: Diode bar prices are dropping
performance has increased ith . K
by 35x since 1988 . bt e
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Advanced lasers and modular systems
make the facility small and enable
rapid construction and maintenance |
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Modular (advanced
architecture) lasers that
could be factory built

Separate first wall &
blanket modules for
rapid & independent
replacement



Targets can be produced very cost effectively

» Targets will be made with technologies from
high-volume manufacturing industries

— Low-cost materials: pennies
per component

— Silicon mandrel: Ball bearing
technology

- High-density carbon capsules:
CH4 pyrolysis

- High-Z: <$.01 per target
- Low-Z foam: SiO,, Carbon

— Automated fabrication/
assembly processes:

- Laser drilling/machining
of capsules

- Stamped cones and hohlraums
- Robotic assembly and packaging
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Examples of mass produced components
that are comparable to LIFE requirements
in volume, precision, and cost

Dimensional

olerance =30 m

$0.20-0.30

Bullets are an interesting comparison; they are multi-component,
multi-materials, that tolerate high acceleration and high velocity
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Injectlon demonstration at GA to simulate the
fu |Ie gth of a LIFE fueling system have
demc nstrated_ma ny-obj jectlves

* Injection at 6 Hz and 400 m/s to 5 mm accuracy demonstrated
— Additional R&D needed for cryogenic targets and higher accuracy

.
=

A W7 -

03EIM/id = NIF- 1009—15801 s1



LIFE targeting requirement is similar
to that of other demanding systems

Airborne Laser

~1 prad angular precision 2 prad precision
(~10 cm, 100 km) (HS, 50 pum, f =25 m)

Developing an integrated target injection, in-flight tracking and
beam engagement system is a key technical challenge




Target fratricide and heéting during
Injection are manageable

» DT ice preheat of 100 mK is deemed acceptable (and conservative):
—Target injector parameters satisfy fratricide constraints:
— Injector nozzle ~15 m from chamber center
— Two mean free paths of neutron shielding (~15 cm) on shutter
— 250 m/s injection velocity

 Hohlraum acts as thermal insulator to protect capsule during injection:
—Radiation heating to capsule:
— Polyimide transmits in the IR
— Radiation shield (Al/polyimide/Al) gives 99% reflectivity
—Convective heating of polyimide window dominates:
— Heat transfer coefficient ~8 W/m?2-K at window edge
— Window heats to ~80% of decomposition temperature

« Several options for reducing target injection risk:
—Higher velocities / shorter distances = reduced heating time
—Tailored target output = reduced chamber gas density
—Injection with cool gas plume - reduced AT and h




Laser inertial fusion energy is highly separable
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X-rays and ion fluxes are simply mitigated

Parameter Value
Target yield 120 MJ
Repetition rate 15 Hz
Fusion power 1800 MW
Chamber radius 4m

X-rays

14 MJ (12%)

lons

12 MJ (10%)

first wall

Chamber fill gas can attenuate
X-rays and ions to protect the
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Thermally robust targets allow for a protective
chamber gas to absorb all ions and 90% of x-rays
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Protective background gas re-radiates
ion and x-ray energy over atimescale
thermal conduction can effectively




Chamber conditions must support laser
beam propagation for the next shot

« Base case design is robust with respect to chamber design:
— 120 MJ fusion yield @ 15 Hz
— 4 m radius
— 2.5 ug/cc xenon

« Chamber design trades-off:
— First wall protection = stop ions & attenuate x-rays in Xe/Kr
— Target heating during injection = dominated by IR from 1st wall
— Laser beam propagation 2 ~1% inverse Bremsstrahlung loss

o System optimization is likely to result in smaller chambers:
— Beam propagation with increased gas densities
— Gas cocktails for better x-ray attenuation
— Tailored target output for fewer x-rays




Chamber designed for rapid replacement
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Modular chambers have independent first walls
that can be replaced without moving the blanket

First wall

module Coolant injection

& extraction plena

Blanket
module







LIFE final optic system

Aspherical (astigmatic) pair
of lithographic Fresnel lenses
(1mm Si0,) at 3-6 J/cm, laser

Neutron
fluence

“pinhole”
(10 cm?) Vacuum
window

Frequency
conversion
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for pinhole

/)ielectric

turning
mirror

Potential gas
injection for final
optic protection

Neutron
pinhole
“baffle”

Shield
wall




A fused silica Fresnel is an attractive
option for the final optic

Neutron-irradiated SiO, can be
annealed to remove color centers

Molecular dynamics simulations |
confirm SiO, self-annealing

\

e Thin Fresnel technology
T has been demonstrated
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LIFE is a credible extension of NIF, ignition on NIF
and ongoing developments in the nuclear industry

J * NIF-like fusion performance

/ « NIF-based lasers

o + Mass produced NIF-like targets
/ . Target injection and engagement

/" « Fusion environment
— Protecting first wall
— Laser beam propagation
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Laser inertial fusion energy is highly separable
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Different LIFE blankets provide
unique energy systems LIFE blankets options

« Li-based salt to make

) - electricity and produce T
\ ,  for other LIFE-based
n v missions (pure fusion-
1.0-4.0 MJ laser ' base case)

— ,@10-15Hz _ «Coolant with U, DU or TH
AT “‘"-I“\\\ e “\ pebbles for Once-Through

Closed Energy Production
(>99% burn-up)

e+ > _8x
1020 14
MeV n/sec « Coolant with fertile or

fissile pebbles for Once-
Through Closed Waste
Burning (> 99% burn-up)

Targets
@ ~10-15 Hz mhk

— WG - Pu, HEU
ICF Gain 15-70 provides
150-1750 MW fusion
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Summary

« LIFE systems will be highly modular and more
compact than NIF

« The high degree of separability inherent to IFE
translates into a significant development path
advantage

* LIFE could be fielded as a pure fusion plant or as a
hybrid to complete waste-related missions

A pilot plant could be operational a decade after NIF
Ignition and that a commercial power plant could be
running a decade after that




Laser Inertial Fusion Energy |
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