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Fast Ignition is an ICF scheme that could provide the 
high gains desirable for Inertial Fusion Energy 
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with 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500 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compression + 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kJ 
hea1ng pulse 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In FI the core is heated to 10 keV using an intense 
particle beam generated by an ultrahigh power laser 

  Long pulse laser must 
compress fuel to: 

   ρ ~ 300 g/cm3 
ρR ~ 2 g/cm2 

S. Atzeni, POP 8, 3316 (1999) 

  Short-pulse laser must 
heat core to 10 KeV: 
   Energy 
~ 20 kJ 
       Δz  ~ 40 µm 
          τ 
~ 20 ps 

  High‐intensity, short‐pulse lasers (I > 1019 W/cm2) incident on a solid target can 
very efficiently accelerate intense beams of energeDc electrons 



Several options are being persued for delivering the 
required particle flux to the core 
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Fast Ignition research programs have emerged at 
numerous universities and national labs across the US 

  Fast Ignition in the US has effectively become a co-ordinated national effort 

University of Rochester 
General Atomics 
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Fast Ignition research programs have emerged at 
numerous universities and national labs across the US 

  Fast Ignition in the US has effectively become a co-ordinated national effort 
  There are strong collaborations between the US, Europe, and Japan 

University of Rochester 
General Atomics 

UCLA 
MIT 

UCSD 
Ohio State University 
University of Nevada 
University of Texas 

ILSA 
LLNL 

Rutherford Appleton Lab 
LULI 

Universita di Roma 
Imperial College, UK 
University of York, UK 
Queens Univ., Belfast 

CEA, France 
IST, Lisbon 

UPM, Madrid, … 

ILE, Osaka University 

National FI Programs
 Intl. FI Programs


Electron FI 

Ion/Proton FI 

HEDLP 
Joint 

Program 



A new generation of facilities are coming online 
capable of integrated tests of fast ignition physics 
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Gekko XII facility achieved the first demonstration of 
energy coupling to a compressed core at sub-scale 

  2.5 kJ nanosecond, 2ω 
compression


  350 J picosecond 
ignitor pulse


Gekko XII Laser Facility
 CD shell + Au cone
 Neutron yield


  Cone-guided electron FI


  1000x increase in 
neutron yield with 
ignitor pulse


R. Kodama et al., Nature 418 (2002) 

  Gekko XII experiment measure 20-30% coupling of laser energy to the core 
  For ignition need to scale up by ~100x in energy 



Two new facilities have come online in the last year 
and begun integrated FI experiments 

FIREX
 OMEGA EP


10 kJ, 2ω compression, 
10 kJ ignitor beam 

30 kJ, 3ω compression, 
2.6 kJ ignitor beam 



NIF will enable integrated fast ignition experiments with 
the actual full-scale fuel assembly required for high gain 

10kJ, 5ps 
ARC 

500 kJ NIF 
beams 

Scale 1 
hohlraum 

DT/CD 
capsule 

  We will measure & optimise coupling efficiency of an 10 kJ ignitor pulse to a full-scale 
fuel assembly  to determine laser, physics, and target requirements for high 
gain FI  



There are three principal design issues for electron 
cone-guided fast ignition 

[2] Laser-plasma interaction, 
fast electron              
generation


[3] Electron 
transport in     
dense plasma


[1] Fuel 
compression


  Fast IgniDon physics is extremely challenging as it encompasses ICF, relaDvisDc laser 
interacDon, parDcle beam transport in dense plasma – fundamental science of all 
intense laser interacDons with high energy density plasma 

  No code capability exists that can model this physics self‐consistently 

500 kJ, 20ns 
implosion 

10-100 kJ, 10 ps 
laser  pulse 



We are developing a new integrated code capability for 
simulating intense laser interaction with an HED plasma 

3D rad-hydro code HYDRA 
(hydrodynamics, radiation, 
ionization kinetics, burn, etc.) 

3D kinetic PIC code PSC 
(solves full Maxwell’s equations 
for fields and kinetic particles, 
with v. high spatial, temporal 
resolution) 

3D hybrid transport codes 
LSP & ZUMA (kinetic fast 
electrons with fluid 
background plasma) 

shelf vacuum solid 
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[1] Fuel compression: we have developed optimal 1D 
isochoric compression designs in DT and CD 



In 2D designs we must assemble the fuel around the 
cone tip – this is challenging at full-scale 

  Maintain 300g/cm3 and 2g/cm2 

  Minimize ablation of cone wall and 
subsequent mixing (degrades yield) 

  Maintain integrity of cone tip from 
extreme pressure on-axis at 
stagnation  

  Minimise compressed core to cone 
tip distance (~100µm) to maximise 
fast electron coupling 

•  This has been a major challenge—mulDple radiaDon‐hydrodynamics 
codes have been used to resolve physics and simulaDon issues 



Typical simulation result with calculated single-shock 
DT radiation drive 

Very close to 1D 
performance over 
most of shell 



Rev 1 hydro implosion design achieves good peak 
density and ρR, but with slightly long transport distance 

Parameter  Rev 1 Design 

Peak density  380 g/cc 

ρR  1.6 g/cm2 

Distance to criDcal surface  130 µm 

100 g/cm3 
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[2] A Rev 1 electron source for NIF ARC is calculated 
with high resolution 2D PIC simulations 

Cases (A) and (B) have linear density ramps over 3!m / 20!m up to 10nc. Laser pulse has a 4th order "

super-Gaussian profile with a 40!m diameter that is uniform in time (stationary solution). "

Intensity equivalent to that of a 4.3kJ, 5ps Gaussian pulse.#
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•  High-res explicit PIC, planar geometry, reduced spatial and temporal scales 
•  Intensity equivalent to 4.3kJ, 5ps, 40µm diameter pulse 

  Total conversion of light into electron energy flux is 60% 
  50% of electron flux is in 80 deg opening angle 

5 million cells 
1 billion particles 
81 hours on 128 cpus 
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Profile length determines details of spectrum and absorption.!
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[3] Transport & Core Heating: Hybrid-PIC code LSP 
combines electron source and rad-hydro data 

PIC simulation of fast 
electron source 

HYDRA simulation 
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We have produced the first transport calculations 
using realistic hydro and PIC input calculations 

  Coupling efficiency is lower than ideal ‐ we need to beYer tailor electron source 
and/or reduce transport distance 

  Transport simulaDons can rapidly explore parameter space for opDmal fuel 
assembly and electron source profiles 

0 100 300 200 
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Rev 2 design: Numerous improvements have led to 
large reduction in transport distance & intact cone tip 

Rev 1 Rev 2 

Parameter  Rev 1 Design  Rev 2 Design 

Peak density  380 g/cc  360 g/cc 

ρR  1.6 g/cm2  1.36 g/cm2 

Cone Dp  Destroyed  Intact 

Distance to criDcal surface  130 µm  17 µm 

100 g/cm3 



Rev 2 design: Electron source PIC at larger scale, cone 
geometry, realistic ARC focal intensity profiles 

Reconstructed 
NIF ARC 
aberrated   
beam (PIC) 

10*Ne/Nc 

NIF ARC    
250mJ pre-
pulse (HYDRA) 



Rev 2 design will use a new hybrid-PIC code that 
combines PIC with a hybrid particle solver at high ρ


  The hybrid-PIC code enables us to model large, solid density targets with a 
realistic self-consistent electron distribution 
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Hybrid Field Equations!Maxwell’s 
equations 

Hybrid field 
equations 

Laser 
light 
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Arbitrarily shaped boundaries 
between PIC/Hybrid 

B.Cohen, A. Kemp,        
L. Divol (submitted 
JCP)  



Experimental campaign: FI can leverage the enormous 
capability for implosion tuning developed by NIC 

Spherical capsule 
tuning 

2010‐2011 

Capsule and cone 
tuning 

2011 

Electron source 
tuning 

2011‐12 

Integrated 
Coupling 

2012‐13 



FI has two major goals: establishing feasibility/
requirements for high gain & demonstrating high gain 

Establish the physics, target, and laser requirements for high gain FI—
demonstrate compression, coupling efficiency, validated simulation capability, 
and high gain point design 

Implement a High Gain FI Demonstration Program (National FI Campaign)  



Simulation tools & experiments over next few years will 
determine the architecture of a high gain facility 

FIREX!

10 kJ compression 

10 kJ ignitor 

OMEGA EP!

25 kJ compression 

2.6 kJ ignitor 

NIF FI 

FIREX II 

HiPER 

NIF


500kJ compression 
10 kJ ignitor 


