Overview of the NRL laser fusion program:

Progress in the Science and Technology of Direct Drive Laser fusion with the KrF laser

> Fusion Power Associates Meeting 3 December 2009

> > Presented by: Steve Obenschain Laser Plasma Branch Plasma Physics Division U.S. Naval Research Laboratory

#### We are committed to Direct Laser Drive



- Simplest approach to inertial fusion.
- Easiest targets to fabricate.
- Challenges of obtaining uniform illumination & sufficient hydro-stability have been overcome with advances in laser technology & target design.
- Predicted gains are more than sufficient for the energy application.

Two laser options for Laser Fusion Energy : Electron beam pumped Krypton Fluoride (KrF) Diode pumped solid state (DPPSL)

Electra KrF Laser (NRL)  $\lambda$  = 248 nm (fundamental) Gas Laser



Mercury DPPSL Laser (LLNL)  $\lambda = 351 \text{ nm} \text{ (tripled)}$ Solid State Laser



KrF has inherent physics advantages for obtaining high gain with direct drive pellet fusion implosions

### KrF Light helps the target physics (1)

Deep UV ( $\lambda$ =248 nm) light provides higher ablation pressures that leads to higher target performance.



### KrF Light helps the target physics (2)

- KrF's ISI beam smoothing can provide the most uniform target illumination of all ICF UV lasers
  - Reduces seed for hydrodynamic instability
  - Bandwidth of up to 3 THz and spatial incoherence may help suppress laser plasma instabilities.



Nike KrF focal profile

## KrF Light helps the target physics (3)

- KrF focal profile can zoom to "follow" an imploding pellet.
  - Simulations indicate more laser energy absorbed, which reduces required energy by up to 35%





Pellet shell is accelerated to sub-ignition velocity (<300 km/sec), and ignited by a converging shock produced by high intensity spike in the laser pulse.



# Shock Ignition simulations predict comparable gains as Fast Ignition...but with simpler driver, targets, & physics



# Shock Ignition connects continuously to conventional central ignition



- NRL "Scale 2" targets
- Shock ignition provides higher gain with less laser energy.
- Can reduce ignition spike energy & intensity by increasing initial main drive.

# High resolution 2-D simulations show that the energy gains should be robust against hydro-instability growth.



250 kJ shock ignited target – NRL FASTRAD3D simulations

Simulations predict sufficient energy gains (G) for the energy application.

G>100 with a 500kJ KrF laser → Fusion Test Facility (FTF)

G >200 with a 1MJ KrF laser

G >300 with a 2 MJ KrF laser

→ Fusion Power plants

Desire  $G \times \eta \ge 10$  for energy application  $\eta$  = laser wall plug efficiency  $\cong$  7% for KrF  $\rightarrow$  need G  $\ge$  140

#### Nike Krypton-fluoride laser target facility



NRL Laser Fusion



Nike Target chamber





#### Nike is used to study physics of laser-accelerated planar targets



# Nike experiments are also exploring feasibility of attaining the very high velocities required for impact Ignition



See Murakami M, Nagatomo H, Azechi H, et al. NUCLEAR FUSION Volume: 46 Issue: 1



X-ray backlit steak camera image

Joint experiment with U. Of Osaka, ILE

Nike target accelerated to greater than 1000 km/sec (0 to 2.2 million miles per hour in 1 billionth of a second)

Streak camera of emitted1.86 keV x-rays



#### A challenge for <u>any</u> laser target design ---Predicting effects of Laser Plasma Instabilities (LPI)



▶ Can produce high energy electrons that preheat DT fuel
 ▶ Can scatters laser beam, reducing drive efficiency

#### Nike experiments explore LPI thresholds with KrF



 $\omega_0/2$  and x-ray signal give intensity thresholds ~1.7×10<sup>15</sup> W/cm<sup>2</sup>

LPI thresholds with KrF are  $\sim 2 \times$  those typically reported for  $\lambda = 351$  nm

#### Ok, so the physics is great with KrF.. But can you make it large, efficient, reliable etc.



#### A key element to E-beam pumped KrF durability

One needs to minimize late time residual current in the electron beam diode.





## **Electra Amplifier**



## Electra Amplifier @ 5hz



# All solid state pulsed power system has run continuously for 11.5 Million shots at 10 Hz (319 hrs)



#### 180 kV, 5 kA, 250 nsec



Components tested to 300M shots





# Summary

- Shock ignited direct drive continues to look very attractive for the energy application.
- Both simulations and experiments indicate KrF light significantly improves the laser-target interaction physics.
- Good progress in the S&T of E-beam pumped KrF towards the goal of obtaining the high system durability needed for IFE.

## Extra slides

#### KrF science and technology updates



8

202

-120

# How to shrink the time scale for Fusion Energy

- Develop science, technology, and engineering together
- Develop as an integrated system focusing on the goal of an attractive power plant
- Include inertial fusion and leverage off vast physics base in NNSA's initial confinement fusion program.
- Adopt a staged approach:
  Settle Highest science/technology risks in early (less costly) stages