The Stellarator Option for FNSFs

M.C. Zarnstorff Princeton Plasma Physics Laboratory

Fusion Power Associates Annual Meeting 2 December 2010

Motivation: Stellarators Reduce Risks for FNSF

• Plasma configuration sustained by coils

Don't require steady-state neutral beams and
 RF-launchers in burning environment

- Steady-state high-beta plasmas already demonstrated
- - -Allows thin first wall for breeding
 - -No need for conducting wall in blanket
 - ⇒ Increase TBR & reduce wall complexity

Motivation: Stellarators Reduce Risks (2)

- Don't need instability or profile feedback control
 - Reduce need for diagnostics, feedback actuators in burning environment.
 - -Higher reliability
 - But:
 - Higher coil complexity.
 - Smaller database of optimized experiments

Stellarator Pilot Plant can Operate Q_{eng} > 1 with L-mode Confinement.

Pilot design point

- A = 4.5 = 4.75m / 1.05m
- $B_T = 5.6T$, $I_P = 1.7MA$ (BS)
- Avg. $W_n = 1.2-2 \text{ MW}/m^2$
- Peak $W_n = 2.4-4 \text{ MW}/m^2$
- H_{ISS04} an L-mode scaling, Comparable to H_{ITER97P}
- Q_{eng} > 1 with H_{ISS04}~ 1.
 Due to low recirculating power.
- Flux sufficient for blanket testing
- Expect higher H, gives higher Q_{eng}, provides margin & reliability.
- Can operate $Q_{eng} > 1$ at low fusion power ~ 100 MW.

Stellarator CTFs Available at Reduced Size

- H_{ISS04} =1.5 attained on nonoptimized stellarators
- Could allow CTF with R=3.5m, $<a> = 0.77m, B_{T}=5.4T$ $P_{fus} = 72MW$
- H-mode confinement H=2 gives Peak W_n=2 MW/m², P_{fus}=144 MW

 Optimal size depends on blanket thickness and magnet technology.

W7X will give data on low-ripple, optimized stellarator confinement. But, not at low aspect ratio, nor QA \Rightarrow need experiment to validate calc.

Engineering Improvements for High Availability And Simplification

Starting from ARIES-CS:

- Reduce the number of internal components (from ~200 modules in ARIES-CS to 50-70), by increasing size.
- Widen inter-coil openings on the outboard side; straighten the outboard legs.
 - Maintenance between coils.
- Simplify the in-vessel blanketshield geometry: 3D→2D shapes where possible.

Modified ARIES CS to improve maintenance feasibility

ARIES-CS blanket

HTS wf/bkt/shld

Simplify Coils using Passive High-Temp. Superconducting Materials

HTS materials offer new design options

•Available in bulk tiles; Good properties at temperatures >30 K.

•Tiles on modular shell structure act as diamagnets, shaping background toroidal field.

 Direct magnetic calculations for tile arrays verify shaping and iota for linear and toroidal geometries

Optimize tilt & overlap next.

ARIES CS using HTS tiles for shaping.

L. Bromberg, M. Zarnstorff, *et al.* TOFE-19, Las Vegas, Nov. 2010

Summary

- Stellarators can reduce the risks to advance magnetic fusion
 - Steady-state, disruption free, high beta demonstrated
 - No need for steady-state NBI, in-vessel RF launchers in burning environment
 - Reduce/eliminate need for feedback, diagnostics, actuators in burning environment
- Compact stellarator project to conservative FNSFs
 - Pilot plants, even with L-mode confinement; R=4.75 m
 - CTFs, R ≥ 3.5 m
- Strategies to simplify stellarator engineering progressing
- Need to validate optimized, compact stellarator characteristics in moderate scale experiments.

Supplemental

Stellarators are Achieving Outstanding Results

• Quiescent high beta plasmas,

limited by heating power & confinement

- LHD β = 5.2% transiently; 4.8% sustained
- W7AS β > 3.2% for 120 τ_E
- + $\tau_{\rm E}$ similar to ELMy H-mode
- Improved confinement with quasi-symmetry
 - HSX finds reduced transport of momentum, particles, and heat with quasi-symmetry.
- Very high density operation, limited only by heating power, without confinement degradation
 - Up to 5 x equivalent Greenwald density (W7AS)
 - LHD $n_e(0)$ up to 10^{21} m⁻³ at B=2.7T !
- Importance of divertors to control recycling

Steady state: LHD pulse lengths up to 55 minutes

Passive 3D shaping: Diamagnetic Tiles

- Idea: use bulk high temperature superconducting tiles as diamagnets to shape magnetic field
- Commercially available, up to 25 cm diameter
- Position and orient tiles to produce desired field shape, reacting to field from simple coils.

64 YBCO samples batch

Large International Superconducting Stellarators

- Large Helical Device (Japan)
 Non-symmetric
 - A = 6-7, R=3.9 m, B=3T

Wendelstein 7-X (Germany)
QP optimized design
A = 11, R=5.4 m, B=3T

- Focused on steady state, including power handling. LHD has achieved 54minute pulses.
- Optimized for other properties than quasi-symmetry ⇒ flows strongly damped
- Not compact. Extrapolate to larger fusion systems than favored in U.S.
- Neither can directly build on or inform tokamak understanding.

Trial Problem: Eliminate TF Ripple For 8-coil TF

- Simple geometry

 8 TF-coils at R=6m axisymmetric
 - Use HTS tiles at R=4.8m to eliminate ripple at R≤4m
- Tilt tiles so that they interact with toroidal field
- Can zero or reverse ripple Magnitude of IBI change similar to need for stellarator

Stellarator Operating Range is much larger than for Tokamaks

- Using equivalent toroidal current that produces same edge iota in Greenwald evaluation.
- LHD $n_{e0} = 10^{21} \text{ m}^{-3} \text{ at B} = 2.7 \text{ T}$ 3-5 X Greenwald limit
- No disruptions.
 Limits are not due to MHD instabilities.
 - High density favorable:
 - Lower plasma edge temperature, Eases edge design
 - Reduces energetic particle instability drive

Stellarator Energy Confinement Similar to Tokamaks

- Stellarator $\tau_{\rm E}$ similar to ELMy H-mode
- T_i = 6.8 keV without impurity accumulation (LHD)
- Discharge duration ~ 1 hr with P ~ 0.6 MW, limited by PWI

ARIES-CS: a Competitive, Attractive Reactor

MCZ 101202 16

• $\langle \beta \rangle \approx 3.4 \%$: Quiescent, Quasi-stationary

- B = 0.9 T, iota_{vac} ≈ 0.5
- Almost quiescent high- β phase, MHD-activity in early medium- β phase
- In general, β not limited by any detected MHD-activity.
- $I_P = 0$, but there can be local currents
- Peak β~8%

Similar plasmas with
 B = 0.9 - 1.1 T, either NBI-alone, or combined NBI + OXB ECH.

• Much higher than predicted linear stability β limit ~ 2%