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summary/conclusions

The NIF can explore advanced ignition options
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« With day-one hardware, the NIF can explore
high-gain shock ignition

- Polar Shock Ignition (uses half the NIF beams
to drive the implosion and the other half to drive
the ignitor shock)

e Fast Ignition requires major hardware upgrades:
100kJ-class multi-PW laser
[also talk by P. Patel at this meeting]

e Polar Direct Drive requires minor upgrades:
multi-FM or 2D-SSD
(talk by J. Soures at this meeting)
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A thick plastic-ablator shock-ignition target for the NIF
has been designed using existing NIF phase plates
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Plastic-ablator shock-ignition targets are robust to shock

timing and reduced clean volumes
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ITF for indirect-drive point design*
is ~5.3 (MYOC = 33%) at 1 MJ.

*J. Lindl, presented to the JASON Review Committee Study
#JSR-09-330, San Diego, CA, 14-16 January 2009.
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The plastic-ablator Sl design is robust to hot electrons
up to 100 keV at 60% of laser energy during
the spike pulse
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Symmetric 2-D DRACO simulations performed with
similar targets indicate robustness to ice roughness
>3.5-4m rms

F S@ lI:IIEIE

Density
(g/cm3)

 Symmetric laser irradiation 1600

e DRACO simulations with 1400

3.5-um-rms roughness in
modes € =2 to 50
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e Target ignites with full gain 800

600
e Upper limit on robustness to

ice modes not yet explored 400

200

e Other nonuniformity studies
to follow (imprint, target offset,
polar drive, etc.)

A Schmitt (NRL) has also developed robust sub-MJ high-gain designs for KrF
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Shock-ignition experiments on OMEGA have
shown improved performance when a shock launching
power spike is added at the end of the laser pulse
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The neutron yield increases considerably when
a shock is launched at the end of the pulse.

Intensity (W/cm?2) (x 1014)

10

Neutron YOC (%)

sssssss

€ Without spike

*n,

' h .
15 30
CR

35

The measured-to-
calculated neutron-
yield ratios are close
to 10% for a hot-spot

convergence ratio of 30.

W. Theobald,et al Phys. Plasmas (2008)



Higher (pR) exceeding = 0.2 g/cm?2 where measured

in implosions with late spike
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The shock-ignition pulse-shape implosions show an improved
performance with respect to compression and neutron yields.
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60 OMEGA beams were split into 40 low-intensity drive
beams and 20 tightly focused beams to study LPI In
shock ignition
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Laser backscattering and hot-electron generation were studied



Up to 35% of the shock-beam laser energy

Is lost due to backscatter
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Up to 16% of the shock-beam energy is converted into
hot electrons of 45-keV temperature
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A laser-plasma interaction experiment was performed in

planar geometry with overlapping beams
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Up to 6% of the high intensity laser energy is converted
into hot electrons
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« The measured hot electron temperature is a factor ~3 higher compared to
spherical target experiment



Fast Ignition

M. Tabak et al., PoP 1, 626 (1994)
S Atzeni et al., PPCF 51, 015016 (2009)



Fast electron heating is observed in fast ignition
Integrated experiments on OMEGA
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Low-energy electrons do not heat the core in integrated
DRACO-LSP simulation
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The simulations predict an improved fast electron

coupling at higher laser intensity
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Simulation for 10ps, 2.6kJ, Rg,=15um. Injection before peak pR

» CE (>100 g/cm?) improves from 0.6% to 2.4%

« CE (>10 g/cm?) slightly improves from 5% to 6%
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About 60 researchers participated to the 9th FSC meeting
at LLNL—a special two-day topical meeting was devoted

to assess electron divergence in fast ignition
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FUSION SCIENCE CENTER MEETING
ON ELECTRON DIVERGENCE IN FAST IGNITION

AUGUST 5-6, 2010
LAWRENCE LIVERMORE NATIONAL LABORATORY
SUMMARY AND CONCLUSIONS
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R. Betti
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Experiments on MTW and LSP simulations study
fast-electron divergence and magnetic collimation
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Various type of targets were used to compare fast electrons
transport in partially and fully driven, un-driven foams and cold CH
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Large extended Cu Ka spot was consistently observed in
WDM targets suggesting a large angular spread of fast electrons
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» 2X larger Ka spot in WDM case compared to the
cold solid targets results

800 ym

*Such large extended Ka spot was neither observed
in un-driven and partially driven (at 3 ns delay case)
foam targets, nor in CH insulator targets




summary/conclusions

The NIF can explore advanced ignition options
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« With day-one hardware, the NIF can explore
high-gain shock ignition

- Polar Shock Ignition (uses half the NIF beams
to drive the implosion and the other half to drive
the ignitor shock)

e Fast Ignition requires major hardware upgrades:
100kJ-class multi-PW laser
[also talk by P. Patel at this meeting]

e Polar Direct Drive requires minor upgrades:
multi-FM or 2D-SSD
(talk by J. Soures at this meeting)
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Fast-electron transport in WDM is investigated

in a set of experiments on Titan using foam targets
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A large angular spread (>90) has been inferred
from the size of the Cu K, emission spot.
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About 3% of the electron-beam energy is deposited in the
core region with p>100 g/cm?
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Energy deposition

Fraction of e- Fraction of laser
beam energy energy
Deposition in gold 52% 10%
Deposition in plastic with p>10 25% 5%
g/cm?3
Deposition in plastic with p>100 | 3% 0.6 %
g/cm?
Neutron yield increase
Neutron yield without hot electrons 6.6x108
Neutron yield with hot electrons 7.4%x108
Neutron yield increase 8x107
Neutron yield increase in the region with p>100 | 1.6x107
g/cm?3




The hot-electron energy can be too low for a good penetration
through the Au cone tip
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Mean hot-electron energy assuming ponderomotive scaling
(averaged within FWHM of the spatial and temporal distribution for a Gaussian pulse)
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 Mean-free path of 250 keV electrons is a few um and is smaller than the
cone wall thickness

« Higher laser intensities are required



5X more electrons were emitted sideway in WDM compared to CH
insulator case
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» Significant increase in the number of escaped electrons from the side is
consistent with large angular spread of electrons in WDM
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