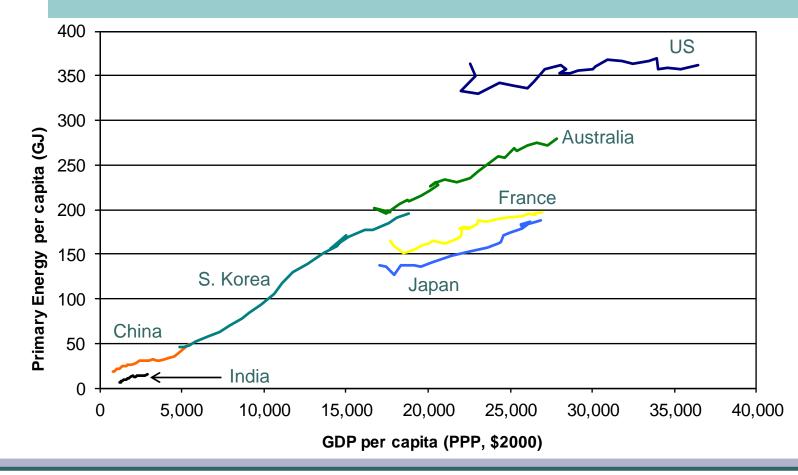
Realization of Fusion Energy: Why, When, How?

Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego

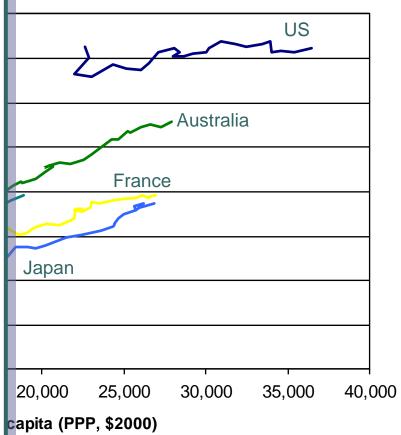

FPA Annual Meeting & Symposium, Washington DC, 14-15 December 2011

We are transitioning from the Era of Fusion Science to the Era of Fusion Power

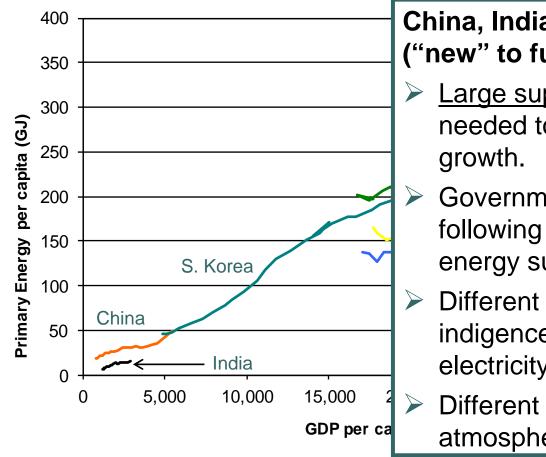
- Large-scale fusion facilities beyond ITER and NIF can only be justified in the context of their contribution to world energy supply. We will have
 - Different Customers (e.g., Power Producers)
 - Different criteria for success (e.g., Commercial viability)
 - Timing (e.g., Is there a market need?)
 - Fusion is NOT the only game in town!
- Is the currently envisioned fusion development path allows us the flexibility to respond to this changing circumstances?
 - Developing alternative plans and small changes in R&D today can have profound difference a decade from now.

Is there a case for a "unified" international road-map for fusion?

• • • "World" needs a lot of energy!


With industrialization of emerging nations, energy use is expected to grow ~ 4 fold in this century (average 1.6% annual growth rate)

* Data from IEA 2006 annual energy outlook (1980-2004)


However, energy needs are different in different parts of the world:

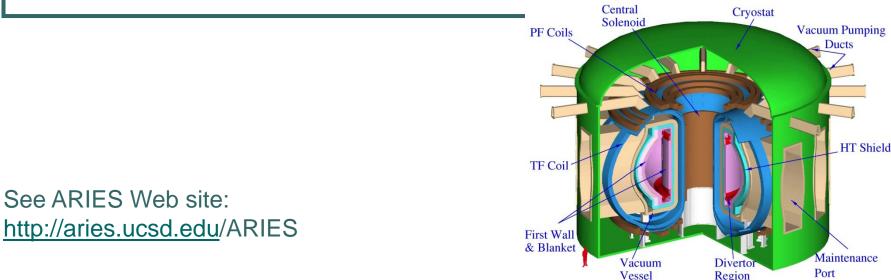
US, EU, Japan (advanced fusion research):

- Electricity supply needs are mainly for the replacement of existing power plants.
- Government regulations have been driving the choice of energy supply.
- Different level of access to indigence fossil fuels for electricity production.
- Different socio-political atmospheres.

However, energy needs are different in different parts of the world:

China, India, (S. Korea), ("new" to fusion research)

- Large supplies of electricity is needed to maintain economic growth.
- Governments actively following policies to expand energy supply.
- Different level of access to indigence fossil fuels for electricity production
- Different socio-political atmospheres.


Rationale for fusion development varies substantially around the world.

- Fusion R&D expenditures are justified to government agencies who have different priorities and, therefore, respond to different "Roadmaps."
 - Energy supply, growth of high-teach industry
 - "Grand Challenge" scientific undertaking
- Fusion plasma physics remains an international endeavor.
- Fusion engineering R&D is limited.
 - Most of the "relatively small" R&D is in EU and Japan but their program focus is different.
 - US has little influence on other countries because of 1) absence any serious R&D 2) developing fusion energy is not our stated program goal.

When & How: Power Plant Needs and State of Current Achievements

Fusion Energy awaits development of Fusion Nuclear Sciences

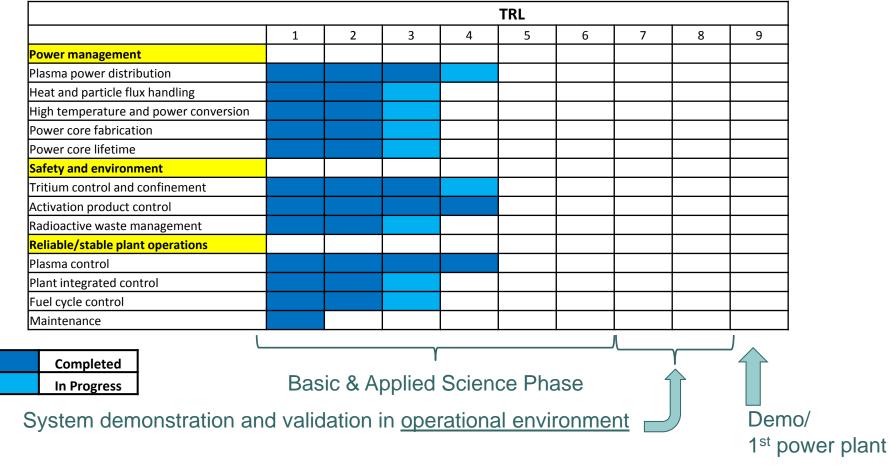
- Power plant studies indicate that attractive visions for tokamak exist (with a range of extrapolation from present physics data base).
 - ITER operation as well as Asian superconducting tokamaks will provide the plasma physics basis to move forward to a fusion nuclear device/Pilot Plant/Demo.
 - However, fusion nuclear sciences are in their infancy.

Technical Readiness Levels provides a basis for assessing the development strategy

	Level	Generic Description		ase
	1	Basic principles observed and formulated.	$\left \right $	e Phase
	2	Technology concepts and/or applications formulated.		Science
	3	Analytical and experimental demonstration of critical function and/or proof of concept.		Validation Phase
	4	Component and/or bench-scale validation in a laboratory environment.		
	5	Component and/or breadboard validation in a relevant environment.		
	6	System/subsystem model or prototype demonstration in relevant environment.		
	7	System prototype demonstration in an operational environment.		
	8	Actual system completed and qualified through test and demonstration.		
	9	Actual system proven through successful mission operations.		

- Developed by NASA and are adopted by US DOD and DOE.
- TRLs are very helpful in defining R&D steps and facilities.

Increased integration


Fidelity of environment

Increased

Example: TRLs for Plasma Facing Components

	Issue-Specific Description	Facilities			
1	System studies to define tradeoffs and requirements on heat flux level, particle flux level, effects on PFC's (temperature, mass transfer).	Design studies, basic research			
2	PFC concepts including armor and cooling configuration explored. Critical paramete Power-plant relevant high-temperature ga	Code development applied research			
3	Data from coupon-scale heat and particle flux experiments; modeling of governing heat and mass transfer processes as demonstration of function of PFC concept.	Small-scale facilities: <i>e.g.</i> , e-beam and plasma simulators			
4	Bench-scale validation of PFC concept through submodule testing in lab environment simulating heat fluxes or particle fluxes at prototypical levels over long times.	Larger-scale facilities for submodule testing, High-temperature + all expected range of conditions			
5	Integrated module testing of the PFC concept in an environment simulating the integration of heat fluxes and particle fluxes at prototypical levels over long times.	Integrated large facility: Prototypical plasma particle flux+heat flux (<i>e.g.</i> an upgraded DIII-D/JET?)			
6	Integrated testing of the PFC concept subsystem in an environment simulatin levels ov Low-temperature water-cooled PFC	Integrated large facility: Prototypical plasma			
7	Prototypic PFC system demonstration in a fusion machine.	Fusion machine ITER (w/ prototypic divertor), CTF			
8	Actual PFC system demonstration qualification in a fusion machine over long operating times.	CTF			
9	Actual PFC system operation to end-of-life in fusion reactor with prototypical conditions and all interfacing subsystems.	DEMO			

Application to power plant systems highlights early stage of fusion technology development

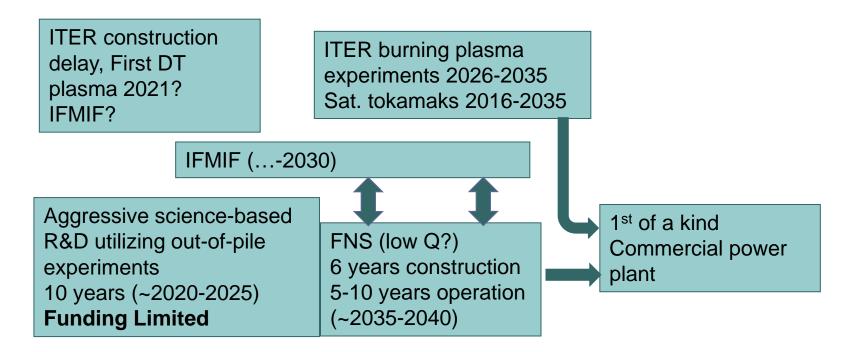
For Details See ARIES Web site: <u>http://aries.ucsd.edu</u>/ARIES/TRL

• ITER will provide substantial progress in some areas (plasma, safety)

	TRL								
	1	2	3	4	5	6	7	8	9
Power management									
Plasma power distribution									
Heat and particle flux handling									
High temperature and power conversion									
Power core fabrication									
Power core lifetime									
Safety and environment									
Tritium control and confinement									
Activation product control									
Radioactive waste management									
Reliable/stable plant operations									
Plasma control									
Plant integrated control									
Fuel cycle control									
Maintenance									

Fusion Nuclear Sciences remain at an early stage of development.

Addressing Fusion Engineering "Grand Challenge"


- Roadmaps which are driven by large devices have a high probability of leading to lengthier and costlier programs for commercial fusion.
 - Mission will be redefined to fit the "promised" time frame.
 - Cost, availability of material and technology will lead to further mission contraction, expanding the R&D needed after the next step and may also to un-necessary R&D.
 - Issue related to operation in a nuclear environment are often ignored.
- Recall ITER history (proposed in mid-80s, many revision of its mission, considerable expenditure, ...).

This is in contrast with the normal development path of any product in which the status of R&D necessitates a facility for experimentation.

Utilize Modern Product Development

- Use modern approaches to "product development" (i.e., science-based engineering vs "cook and look")
 - Extensive "out-of-pile" testing to understand fundamental processes
 - Extensive use of simulation techniques to explore many of synergetic effects and define new experiments.
 - Experiment planning such that it highlights multi-physics interaction (instead of the "old" approach of testing integrated systems to failure repeatedly).
 - Aiming for <u>validation</u> in a fully integrated system

2035:

Decision to field 1st commercial plant

Key is aggressive science-based engineering up-front

Developing commercial fusion energy requires changes in our folklore:

- Fusion power technologies (fusion nuclear sciences) are in their early stages of development. We are NOT ready!
- Development of fusion nuclear sciences requires a large amount of resources.
 - We readily talk about multi-billion-\$ plasma-based facilities but frown at \$1B price tag of IFMIF.
- We need to utilize modern science-based engineering approach (cook and look approach is very expensive and time-consuming)
 - A large potion of R&D can and should be performed in simulated environments (non-nuclear and/or fission test).
 - Fusion nuclear testing is needed only to validate the predicted performance plus all synergetic effects that were not foreseen.
 - With this framework, It is possible to field a <u>commercial</u> fusion power plant before 2050, but we lay the ground work now!

• • • Thank you!