Perspective on Reversed Field Pinch (RFP)
Fusion Research

John Sarff
University of Wisconsin-Madison

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Fusion Power Associates, 32" Annual Meeting and Symposium « Washington DC « Dec 14-15, 2011



“Innovative Confinement Concept” research yields multiple

benefits el

e Three synergistic elements of ICC research:
— Invent solutions to fusion’s scientific and technical challenges
— Grow predictive science for fusion plasma systems
— Advance basic plasma science, especially experimental

» Represents a significant portion of experimental high temperature plasma
research at universities/colleges. On-site experiments remain very attractive to
students and deans.

 The ICC community is discussing how to strengthen its role, e.g.,

— Expanding scope to include areas like HEDLP and materials research
experiments

— New organizational title instead of “Innovative Confinement Concepts”

— Turnover of the annual workshop program committee, including a new chair
(Mike Brown, Swarthmore)

— Suggestion for NRC-sponsored workshop on basic plasma science



The RFP’s distinguishing features could greatly facilitate the

reliability and maintainability of a fusion power core g

 Magnetic field generated primarily by plasma current
J J i B(r) Profile in the RFP

o Small field at the magnet coils 1

» Possibility for onmic heating to ignition, without
auxiliary heating apparatus facing the plasma |B]

« High beta and high density limits e

toward | Magnetic field strength
magnets [ is minimum at the coils 7
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e Key scientific issues:
— Confinement at high current

— Current drive (steady-state or attractive
pulsed scenario)

— Self-consistent plasma-boundary interface

— Plasma termination dynamics

Br Reversed



The RFP’s distinguishing features could greatly facilitate the

reliability and maintainability of a fusion power core g

Why might this be important?

Example: What if RF antennas struggle adjacent to a steady-state
2.5 GW fusion plasma?

Ohmic heating is efficient and nearly invisibly crosses smooth
material boundaries. It’s available in large quantity at low safety
factor, g ~ B,/ I, (which the RFP explores)

—Confinement at high current
| Ry a R, Ryt a
— Current drive (steady-state or attractive

pulsed scenario)

— Self-consistent plasma-boundary interface

— Plasma termination dynamics

Br Reversed



Since 1990, the TITAN reactor study has defined the RFP fusion

vision, but it more generically represents the compact limit | MST 4

» There is nothing fundamental about the RFP that demands compactness
 TITAN exercise lends credence to several attractive features, e.g,

— Steady-state induction, via oscillating field current drive

— Ohmic ignition

— Single-piece maintenance

— Low cost-of-electricity

TITAN Parameters

* a=06mM R=39m
/=18 MA

i [36 = 23%

* 2300 MW fusion

* 18 MW/m? neutrons
* 4.6 MW/m? radiation
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TITAN analysis indicates cost-of-electricity varies weakly above

a threshold wall loading P,/ A ~ 5 MW/m? [

 Threshold in COE understood to be the point where the plasma minor radius is
comparable to the blanket thickness
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Low applied field for the RFP allows shielded copper magnets,

If beneficial for reliability and maintainability prany

 Low By configurations have naturally large fusion beta £, ~ (p)/ B,
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Lawson-like analysis indicates ohmic ignition is possible if

energy confinement is similar to that in a tokamak el

e Example: a =1.5 m, R/a=4, I, = 30 MA, <B)>=5.6 T, B
e 1D profiles similar to present-day RFP assumed
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Physics-based scaling for transport in a stochastic magnetic fied.

Test particle expectation for parallel streaming in a stochastic field
X ~vgDy ~~T L(B/B)

* Magnetic fluctuations in the RFP originate from MHD tearing instability, for which
the Lundquist number, S=7,/t, , is the key dimensionless parameter

Anticipate a scaling B/B~S™% — X~ T2, §72¢

1+2a 1+« -(1+a)
o Zero-D power balance for ohmic heating: T ~ a3—3a]lfj—3a (n/ngy ) 33

« MST and RFX trends for standard confinement (excl. improved via profile control)
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and MHD computation)



Ohmic ignition in the RFP does not demand complete

suppression of stochastic transport

e Example: a =1.5 m, R/a=4, I, = 30 MA, <B)>=5.6 T, B
e 1D profiles similar to present-day RFP assumed
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Some recent RFP results



Present RFP experiments
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A new RFP program in China established this year at the

University of Science and Technology, Hefei @)

» Shell system suitable for plasma-boundary studies, e.g., lithium
e Advanced active mode control (Phase 2)

* Advanced inductive current drive and 3D physics in helical state
o Collaboration with EAST team on the design and construction

e Goal for 18t plasma in 3 years

Keda Toroidal Experiment (KTX)
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Spontaneous helical equilibrium creates stellarator-like plasmas

In RFP experiments

e Growing collaborations with the stellarator community, e.g., opportunity to develop
3D equilibrium reconstruction methods and tools

« MST/RFX diagnostic sets well-suited for this: interferometry/Faraday rotation,
MSE, 2-color SXR, Thomson scattering, etc
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Classical confinement of impurity ions in MST plasmas

T4

The “neoclassical” enhancement of perpendicular transport is small in the RFP,
e.g., the banana orbit width is less the the gyro-radius

e Energetic ions also behave classically (with new 1 MW neutral beam injector)
» Explores basic physics of toroidal magnetic confinement
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Micro-turbulence in the RFP an emerging story

 Differences relative to high Bt equilibria:
— Larger critical gradient, scales with minor radius
— Mode structure not localized to outboard side of torus (less ballooning)
* Micro-tearing at high beta similar to recent analysis for the spherical tokamak
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MST’s advanced diagnostics offer great potential for

measurements of micro-turbulence

FIR Interferometer/Polarimeter/Scattering

(UCLA) Fast Thomson Scattering
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Summary

 The RFP remains a viable candidate to address key issues for magnetic fusion,
while making valuable contributions to the development of fusion science

* Low external magnetic field and ohmic ignition could benefit the maintainability
and reliability of a fusion power core

e Growing and validating predictive fusion science benefits from the expanded
parameter space of major variables that define various magnetic configurations



