
Perspective on Reversed Field Pinch (RFP) 
Fusion Research!

John Sarff!
University of Wisconsin-Madison!

!

Fusion Power Associates, 32nd Annual Meeting and Symposium • Washington DC • Dec 14-15, 2011!



“Innovative Confinement Concept” research yields multiple 
benefits!
•  Three synergistic elements of ICC research:!

–  Invent solutions to fusionʼs scientific and technical challenges!
–  Grow predictive science for fusion plasma systems!
–  Advance basic plasma science, especially experimental  
!

•  Represents a significant portion of experimental high temperature plasma 
research at universities/colleges. On-site experiments remain very attractive to 
students and deans.!

•  The ICC community is discussing how to strengthen its role, e.g.,!
–  Expanding scope to include areas like HEDLP and materials research 

experiments!
–  New organizational title instead of “Innovative Confinement Concepts” !
–  Turnover of the annual workshop program committee, including a new chair 

(Mike Brown, Swarthmore)!
–  Suggestion for NRC-sponsored workshop on basic plasma science!



The RFPʼs distinguishing features could greatly facilitate the 
reliability and maintainability of a fusion power core!
•  Magnetic field generated primarily by plasma current!

•  Small field at the magnet coils!

•  Possibility for ohmic heating to ignition, without  
auxiliary heating apparatus facing the plasma!

•  High beta and high density limits!

•  Key scientific issues:!
–  Confinement at high current!
–  Current drive (steady-state or attractive  

pulsed scenario)!

–  Self-consistent plasma-boundary interface!
–  Plasma termination dynamics!
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Field Profile in the RFP!Why might this be important?!
 
Example:  What if RF antennas struggle adjacent to a steady-state  
                 2.5 GW fusion plasma?!
!
                 Ohmic heating is efficient and nearly invisibly crosses smooth  
                 material boundaries. Itʼs available in large quantity at low safety 
                 factor, q ~ Bt / Ip  (which the RFP explores)!
                 !



Since 1990, the TITAN reactor study has defined the RFP fusion 
vision, but it more generically represents the compact limit!
•  There is nothing fundamental about the RFP that demands compactness!
•  TITAN exercise lends credence to several attractive features, e.g,!

–  Steady-state induction, via oscillating field current drive!
–  Ohmic ignition!
–  Single-piece maintenance!
–  Low cost-of-electricity!
!

TITAN Parameters!
•  a = 0.6 m, R = 3.9 m!
•  I = 18 MA!
•  βθ = 23%!
•  2300 MW fusion!
•  18 MW/m2 neutrons!
•  4.6 MW/m2 radiation!



Since 1990, the TITAN reactor study has defined the RFP fusion 
vision, but it more generically represents the compact limit!
•  There is nothing fundamental about the RFP that demands compactness!
•  TITAN exercise lends credence to several attractive features, e.g,!

–  Steady-state induction, via oscillating field current drive!
–  Ohmic ignition!
–  Single-piece maintenance!
–  Low cost-of-electricity!

TITAN Parameters!
•  a = 0.6 m, R = 3.9 m!
•  I = 18 MA!
•  βθ = 23%!
•  2300 MW fusion!
•  18 MW/m2 neutrons!
•  4.6 MW/m2 radiation!



TITAN analysis indicates cost-of-electricity varies weakly above 
a threshold wall loading Pn / A ~ 5 MW/m2!
•  Threshold in COE understood to be the point where the plasma minor radius is 

comparable to the blanket thickness!

  !
For “bottom line,” the RFP does 
not need to be so compact!
!
Physics and engineering  
requirements tend to be less 
demanding for a larger plasma!

Update by Ron Miller, Decysive Systems!
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Low applied field for the RFP allows shielded copper magnets, 
if beneficial for reliability and maintainability!
•  Low BT configurations have naturally large fusion beta  

 
                            comparable to an advanced tokamak, but                   for the RFP!

From FESAC “Priorities, Gaps and Opportunities: Towards a Long-Range Strategic Plan for MFE”!
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Lawson-like analysis indicates ohmic ignition is possible if 
energy confinement is similar to that in a tokamak!
•  Example: a =1.5 m, R/a=4, Ip = 30 MA, ⟨B⟩=5.6 T, Bcoil ~ 3 T, Pn /A ~ 5 MW/m2!

•  1D profiles similar to present-day RFP assumed!
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Physics-based scaling for transport in a stochastic magnetic field!

•  Test particle expectation for parallel streaming in a stochastic field!

!
•  Magnetic fluctuations in the RFP originate from MHD tearing instability, for which 

the Lundquist number,                    , is the key dimensionless parameter!

!

•  Zero-D power balance for ohmic heating:!

•  MST and RFX trends for standard confinement (excl. improved via profile control)!
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Ohmic ignition in the RFP does not demand complete 
suppression of stochastic transport!
•  Example: a =1.5 m, R/a=4, Ip = 30 MA, ⟨B⟩=5.6 T, Bcoil ~ 3 T, Pn /A ~ 5 MW/m2!

•  1D profiles similar to present-day RFP assumed!
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Some recent RFP results!



Present RFP experiments!

Extrap-T2R (Sweden)!
R/a = 1.24 M / 0.18 m! RELAX (Japan)!

R/a = 0.5 m / 0.25 m!

RFX-Mod (Italy)!
R/a = 2 m / 0.46 m!

MST (UW-Madison)!
R/a = 1.5 m / 0.5 m!



A new RFP program in China established this year at the 
University of Science and Technology, Hefei!
•  Shell system suitable for plasma-boundary studies, e.g., lithium!
•  Advanced active mode control (Phase 2)!
•  Advanced inductive current drive and 3D physics in helical state !
•  Collaboration with EAST team on the design and construction!
•  Goal for 1st plasma in 3 years!

Keda Toroidal Experiment (KTX)!
  	

                       R = 1.4 m!
                     a = 0.4 m!
                       Ip = 0.5-1 MA!



Spontaneous helical equilibrium creates stellarator-like plasmas 
in RFP experiments!
•  Growing collaborations with the stellarator community, e.g., opportunity to develop 

3D equilibrium reconstruction methods and tools!
•  MST/RFX diagnostic sets well-suited for this: interferometry/Faraday rotation, 

MSE, 2-color SXR, Thomson scattering, etc!
MST!
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Classical confinement of impurity ions in MST plasmas!

•  The “neoclassical” enhancement of perpendicular transport is small in the RFP, 
e.g., the banana orbit width is less the the gyro-radius!

•  Energetic ions also behave classically (with new 1 MW neutral beam injector)!
•  Explores basic physics of toroidal magnetic confinement!
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Micro-turbulence in the RFP an emerging story!

•  Differences relative to high BT equilibria:!
–  Larger critical gradient, scales with minor radius!
–  Mode structure not localized to outboard side of torus (less ballooning)!

•  Micro-tearing at high beta similar to recent analysis for the spherical tokamak !
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MSTʼs advanced diagnostics offer great potential for 
measurements of micro-turbulence!
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(UCLA)! Fast Thomson Scattering!
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Summary!

•  The RFP remains a viable candidate to address key issues for magnetic fusion, 
while making valuable contributions to the development of fusion science!

•  Low external magnetic field and ohmic ignition could benefit the maintainability 
and reliability of a fusion power core!

•  Growing and validating predictive fusion science benefits from the expanded 
parameter space of major variables that define various magnetic configurations!


