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FES: Advance the fundamental science of
magnetically confined plasmas

* Too early to narrow research to tokamaks (disruptions,
steady state, ...)

o Different pathways lead naturally to breadth in science and
technology

e Example: Confinement in the field of a levitated dipole
 Unique physics illuminated by closed field line systems

 Unique technology challenges: superconducting magnet
development



Dipole concept was inspired by over 50 years
of magnetospheric research: earth, Jupiter...

®* Gold (1959): Plasma pressure is
centrally peaked with p ~ 1/8VY ~ R2073

® Melrose (1967): Plasma density is
centrally peaked with {n) ~ 1/8V ~ R*

® Farley et al. (1970): Turbulence causes
strong inward particle pinch (radiation
belts)

® Adriani et al. (2011): Discovery of geo-
magnetically trapped cosmic-ray
antiprotons

 Dipole is simplest confinement field ¢ Relevant to space science & fusion plasmas
* Naturally occurring high-g plasma  « Hasegawa, [CPP&CF 1(1987)147]

(B~ 2in Jupiter) Can lead to advanced-fuel fusion power source
e pand n, strongly peaked



Magnetic topology determines equilibrium

and stability

* Two basic toriodal magnetic topologies
e Irrational flux surfaces, average well: tokamak, ...

e Equilibrium: plasma pressure © field pressure = £<0.1
* Low frequency drift modes balloon to outside

e Closed field lines: Dipole, ....
e Equilibrium: plasma pressure © field line tension = [~1
 Drift modes are Interchange-like

* Plasma - magnet arrangement
 Plasma within colil set: tokamalk, ...
» Easy access to coils but divertor, disruption difficulty

e Coil within plasma
* Plasma easy to access, large flux expansion, good field utilization



Laboratory Dipole Experiments
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The Levitated Dipole Experiment (LDX)
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Unique properties of dipole field

Colil inside of plasma
« B~1/R3: Strong decay of field with radius
 Field and plasma pressure fall off together leading to high average

Stability derives from plasma compressibility

e MHD stability limit on pressure gradient => Small plasma in large
vacuum chamber

No magnetic shear = Large-scale adiabatic convection
No toroidal field: j, =0 =

e No MHD kink drive
 No neoclassical enhancement of transport



LDX: Floating coil can be supported or levitated

Mechanically Supported Magnetically Levitated
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* QObserve ionization glow moves outwards with levitation.
= Profile determined by X-field transport.

e Supported mode: Losses to supports dominate X-field
transport (mirror machine).



Main Experimental Results

Low-frequency interchange instabilities dominate
plasma dynamics

Very high peak beta (> 50%) with levitation
Turbulence drives plasma to very steep profiles and
creates strong inward particle pinch

e While Farley,Tomassian, Walt [PRL (1970)] were the
first to observe the collisionless inward pinch in the
magnetosphere

e LDX was the first to clearly observe a strong inward
turbulent pinch in a laboratory plasma



Stability: Dipoles exhibit both MHD and drift instability

Profile “Shape”(i.e. gradient)
Sets Stability Limits

MHD stability  Vp<(Vp)
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Simple pinch derivation:

* Assume turbulence frequency<< bounce, cyclotron frequency
 F-P eq. (turbulent equipartition) & conservation of u &j(=98v”ds)

e Velocity space integration: For constant D,

A(ndV) dpdV")  SV=gdl/B, y=5/3
I=-D, £ ,=-D, o §dl/B, y

> Stationary states: I, T =0=n,x1/0V, pxl/oV"

> F=—Doﬂ%)=—f) Vn+nV
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Gyrokinetic simulations (GS2) corroborate
turbulent pinch
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Compare levitated and supported operation

Levitated
Supported

6[TECRH Power (kW)

® 2-3 x Diamagnetic flux

41

21

Vacuum Pressure (é-6 Torr)

® |ncreased ratio of
diamagnetism-to-cyclotron
emission indicates
higher thermal pressure

Outer Flux Loop (mV sec)

® 3-5xline density
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Multi-cord interferometer indicates strong density
peaking during levitation

(a) Interferometer Cords (b) Interferometer Measurements (c) Density and Number Radial Profiles
6

"

. 310 £71212004
$71213003
Average; 6=10 sec

I. T L)
Levitated: Peaked Density Profile

2e10" Levitaled O
- * Supported O

n
T
|

Interferometer (Radijan)
IS
$
|
1
Density (Particles/cc)

-
-
o
I
/
1

T t N ¢
Supported: Uniform Density Profile Frrar 0 | 1 é“— B e
? —
0
% p % a10™ [ %
g - i
“w
5 % 10" | A
% S
[ 4 © 240 i -
g’ < AmE @
2 = 1ed0” | .
=
= 'g e LlJ
oL L — 0 ~<b-<d-

. 12 14 16 18
time (s) Radius (m)

o
o
—
o
i
o

o

(o2}

o

®

-

o

e Elimination of loss to supports = density pinch
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Observed density evolution matches expectations

e D drives pinch F=—Ddig(57v) oV =§dl/B

-« D =R%E2)7, ~0047V2/s (EO, T, from edge probes)
- Probe measurements match pinch time of ~25 ms.
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Pinch observed in tokamaks and stellarators

e Observations of a pinch
o Stellarator LHD: Tanaka, et al., [Fus. Sci. & Tech., 58
(2010) 70].
e Tokamak DIlI-D: L-mode: Baker and Rosenbluth, [PoP
5, (1998) 2936], Baker [PoP 9, 2002) 2675].

 Stationary (pinched) density profiles have n__./

r]edge>2

e Tore Supra: Hoang et al, [PRL 90(2003) 155002].

« Cmod: “I-mode” observes L-mode (inwardly peaked)

density with h-mode temperature. [Whyte et al., Nucl.
Fusion 50 (2010)].

e Will pinch be operative in ITER?

e Tokamak/stellarator pinch is weaker than in dipole and
more difficult to observe and to formulate.
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Why is pinch particularly strong in a dipole?

* Pinch drives stationary profiles: n,«1/6V, pe1/6VY 6V=4dl/B
« Dipole: Bex1/R3=>n,oc1/R4
o Tokamak: n,x<1l/q

e Trapped particles drive pinch **:
=> All dipole particles effectively “trapped” (no toroidal streaming)

 Both MHD and drift frequency instabilities are flute-like
= All particles equally effected

= When D =D(A tinclude D inintegral r=- pv I
en (A) mustinclude D in integral T ffdud]Dw&wM’j

 |Indipole pdV’ ~const and particle pinch does not necessarily
transport energy.
* In tokamak with good curvature no MHD constrainton Vp

& a particle pinch is accompanied by an energy outflow.
** Isichenko, Gruzinov, Diamond, PRL (1995) 4436.
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For invariant profiles Tt & 1t set by edge physics

. 3 +2 —
For pocl/oVY Eyy =3P RS (R IR Te=E/ P
* For npxl/oV NfOf "ol SOI(R O) TPthot/ S

Dipole amplifies SOL density and pressure much like
gas flow from a large volume through a small hole

» Confinement time ratio: %“%(Rsol/&)y+lz10—50

= For invariant profiles energy and particle confinement set by
SOL physics.

=> 1./ 1p IS large and depends only on geometric factors (i.e.
magnetic flux expansion)
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The next step for LDX was an ICRF upqrade

Re[ed]

Power Absorbed Plasm

Strong Fast-Wave

Excitation
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® QObtain fusion relevant plasma densities with thermal ions
B~1, n>10" m=3, 500 eV ion thermal plasmas

e 1MW HF transmitter is on-site will allow 200 kW absorbed
power.

Heating scenario has been developed including full wave simulation:
m=0 high field antenna heats with near field and fast & slow waves
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Dipole is ideal for tritium-suppressed fusion

DT has difficult issues relating to materials damage (swelling and DPA)
from 14 MeV neutrons and to tritium breeding.

3
— He” +n
D+D 7.,
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DD cycle, removing secondary T,
would ameliorate problem. RO lee b
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Laboratory Dipole Research

Four laboratory dipole devices intensively studied during the past decade:
Columbia University, MIT, University of Tokyo

Demonstrated the plasma physics of the magnetosphere appears in the
laboratory

 Very high beta (>50%)
e 2D dynamics
e large-scale interchange turbulence

Directly observed the turbulent inward pinch, which drives centrally-
peaked density and temperature profiles

Important consequence of the stationary profiles:
Energy and particle confinement is set by SOL physics.

Energy confinement is longer than particle confinement, making
possible advanced fusion fuel cycles.
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