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FES: Advance the fundamental science of 
magnetically confined plasmas  

•  Too early to narrow research to tokamaks (disruptions, 
steady state, …) 

•  Different pathways lead naturally to breadth in science and 
technology 

•   Example: Confinement in the field of a levitated dipole 
•  Unique physics illuminated by closed field line systems 
•  Unique technology challenges: superconducting magnet 

development 
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Dipole concept was inspired by over 50 years 
of magnetospheric research: earth, Jupiter… 

•  Dipole is simplest confinement field 
•  Naturally occurring high-β plasma        

 (β ~ 2 in Jupiter) 
•  p and ne strongly peaked 

•  Relevant to space science & fusion plasmas  
•  Hasegawa, [CPP&CF 1(1987)147] 
      Can lead to advanced-fuel fusion power source 
 

J. Spencer	



The Io Plasma Torus around Jupiter!

  

•  Gold (1959): Plasma pressure is 
centrally peaked with   p ~ 1/δVγ ~ R-20/3 

•  Melrose (1967): Plasma density is 
centrally peaked with〈n〉~ 1/δV ~ R-4 

•  Farley et al. (1970): Turbulence causes 
strong inward particle pinch (radiation 
belts) 

•  Adriani et al. (2011): Discovery of geo-
magnetically trapped cosmic-ray 
antiprotons 



Magnetic topology determines equilibrium  
and stability 

•  Two basic toriodal magnetic topologies 
•  Irrational flux surfaces, average well: tokamak, … 

•  Equilibrium: plasma pressure  field pressure  β<0.1	



•  Low frequency drift modes balloon to outside 

•  Closed field lines: Dipole, …. 
•  Equilibrium: plasma pressure  field line tension   β∼1	



•  Drift modes are Interchange-like  

•  Plasma – magnet arrangement 
•  Plasma within coil set: tokamak, … 

•  Easy access to coils but divertor, disruption difficulty 
•  Coil within plasma 

•  Plasma easy to access, large flux expansion, good field utilization 
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Laboratory Dipole Experiments 
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The Levitated Dipole Experiment (LDX) 
•    
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Unique properties of dipole field 
 
•  Coil inside of plasma 

•  B~1/R3: Strong decay of field with radius 
•  Field and plasma pressure fall off together leading to high average β  

•  Stability derives from plasma compressibility  
•  MHD stability limit on pressure gradient  Small plasma in large 

vacuum chamber 
•  No magnetic shear  Large-scale adiabatic convection 
•  No toroidal field:  j|| =0   

•  No MHD kink drive 
•  No neoclassical enhancement of transport  
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LDX: Floating coil can be supported or levitated 

•  Observe ionization glow moves outwards with levitation.  
 Profile determined by X-field transport.  

•  Supported mode: Losses to supports dominate X-field 
transport (mirror machine). 



Main Experimental Results 
 

•  Low-frequency interchange instabilities dominate 
plasma dynamics 

•  Very high peak beta (> 50%) with levitation 

•  Turbulence drives plasma to very steep profiles and 
creates strong inward particle pinch 
•  While Farley,Tomassian, Walt [PRL (1970)] were the 

first to observe the collisionless inward pinch in the 
magnetosphere 

•  LDX was the first to clearly observe a strong inward 
turbulent pinch in a laboratory plasma 
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•  MHD stability  

•  Entropy mode drift-kinetic 
instability depends upon 
 

•  Both MHD and entropy modes 
are flute-like.  

Stability: Dipoles exhibit both MHD and drift instability 

− d lnpd lnδV <γ δV = d /B∫ , γ =5/3

∇p<(∇p)crit

€ 

η=dlnT dlnn

η=n∇TT∇n
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Simple pinch derivation: 
•  Assume turbulence frequency<< bounce, cyclotron frequency  
•  F-P eq. (turbulent equipartition) & conservation of µ &  

                                              

•  Velocity space integration: For constant 

  Stationary states: 

    
         

 

δV = d/B∫ , γ=5/3

∂
∂t f =

∂Γ
∂ψ µ, j

€ 

Γ(µ, j)=−Dt
∂f
∂ψ µ, j

€ 

Dt

€ 

Γ=−Dt0
∂(nδV)
∂ψ Γs=−Dt0

∂(pδVγ )
∂ψ

⇒

€ 

Γ, Γs≈0⇒ne∝1/δV, p∝1/δV γ

Γ=−D0
∂(nδV)
∂ψ =−D̂∇n+nV̂

€ 

j(= v||ds∫ )
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Gyrokinetic simulations (GS2) corroborate 
turbulent pinch                     

When MHD is stable & entropy 
mode is unstable: 
•  For η>2/3 pinch inwards;  
• Outwards energy flow 
accompanies inwards density 
pinch & visa versa. 
•  LDX: internal heating, 
edge fueling yields η>2/3. 

• MHD instability will similarly 
create pinch [Kouznetsov, Freidberg, 
Kesner, 2007]. 

   MHD unstable 

€ 

η=dlnT dlnn
Kobayashi, Rogers, Dorland, PRL (2010) 
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Compare levitated and supported operation 

•  2-3 x Diamagnetic flux 

•  Increased ratio of 
diamagnetism-to-cyclotron 
emission indicates  
higher thermal pressure 

•  3-5 x line density 
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Multi-cord interferometer indicates strong density 
peaking during levitation 

•  Elimination of loss to supports  density pinch 
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Observed density evolution matches expectations 
•  D drives pinch  

•                                                                (Eφ, τcorr from edge probes) 
•   Probe measurements match pinch time of ~25 ms. 

€ 

D =R2 Eφ
2 τ corr ≈0.047V 2 /s

Γ=−D d(nδV)
dψ δV = dl/B∫

€ 



Pinch observed in tokamaks and stellarators 
•  Observations of a pinch 

•  Stellarator LHD: Tanaka, et al., [Fus. Sci. & Tech., 58 
(2010) 70]. 

•  Tokamak DIII-D: L-mode: Baker and Rosenbluth, [PoP 
5, (1998) 2936], Baker [PoP 9, 2002) 2675]. 
•  Stationary (pinched) density profiles have nmax/

nedge>2 
•  Tore Supra: Hoang et al, [PRL 90(2003) 155002].   
•   Cmod: “I-mode” observes L-mode (inwardly peaked) 

density with h-mode temperature. [Whyte et al., Nucl. 
Fusion 50 (2010)].  

•   Will pinch be operative in ITER?                    
•  Tokamak/stellarator pinch is weaker than in dipole and 

more difficult to observe and to formulate.   
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Why is pinch particularly strong in a dipole? 

•   Pinch drives stationary profiles: 
•  Dipole :  
•  Tokamak:  

•  Trapped particles drive pinch ** :$
 %All dipole particles effectively “trapped” (no toroidal streaming) 

•  Both MHD and drift frequency instabilities are flute-like 
  All particles equally effected 
  When                      must include D in integral 

•  In dipole                    and particle pinch does not necessarily 
transport energy. 
•  In tokamak with good curvature no MHD constraint on 
  & a particle pinch is accompanied by an energy outflow. 

€ 

B∝1/R3⇒ne∝1/R4

€ 

ne∝1/q

€ 

Γ=− dµdj∫∫ Dψ ∂f
∂ψ µ, j

D =D(λ)

€ 

∇p

ne∝1/δV, p∝1/δV
γ δV = dl /B∫

€ 

pδV γ ~Const

** Isichenko, Gruzinov, Diamond, PRL (1995) 4436. 
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For invariant profiles τE & τP set by edge physics 

•  For              ,                                             τE=Etot/ P  
 

•  For                                                            τP=Ntot/ S  

 Dipole amplifies SOL density and pressure much like 
gas flow from a large volume through a small hole 

 
•  Confinement time ratio: 

 For invariant profiles energy and particle confinement set by 
SOL physics.  

 τE/ τP is large and depends only on geometric factors (i.e. 
magnetic flux expansion) 

 

 

ne∝1/δV

€ 

Ntot=nsolRsol
3 (Rsol /R0)

p∝1/δVγ Etot=
3
2
psolRsol

3 (Rsol /R0)
γ+2

€ 

τ E
τP
∝32(Rsol R0)γ+1≈10−50
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The next step for LDX was an ICRF upgrade 

•  Obtain fusion relevant plasma densities with thermal ions 

β~1,  ne>1019 m-3, 500 eV ion thermal plasmas 

•  1 MW HF transmitter is on-site will allow 200 kW absorbed 
power. 

 Heating scenario has been developed including full wave simulation: 
m=0 high field antenna heats with near field and fast & slow waves 
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Dipole is ideal for tritium-suppressed fusion 
•  DT has difficult issues relating to materials damage (swelling and DPA) 

from 14 MeV neutrons and to tritium breeding. 
•    
  

 DD cycle, removing secondary T,  
 would ameliorate problem.  

•  Burn secondary 3He 
•  T decays to 3He 

•  Requires τP<< τE for T removal 
•  Similarly τP<< τE for ash removal 
•  T-suppressed power source 

  would reduce wall damage to  
 fission levels 

•   Dipole has τP<< τE, high β… 
  Kesner et al, Nuc Fus 44 (2004) 193 

  
 

  

  

Sawan, Zinkle, Sheffield FED 61-62 (2002) 

€ 

D+D →T + p

€ 

→He3+n



Laboratory Dipole Research 

•  Four laboratory dipole devices intensively studied during the past decade: 
Columbia University, MIT, University of Tokyo 

•  Demonstrated the plasma physics of the magnetosphere appears in the 
laboratory 
•  Very high beta (>50%)  

•  2D dynamics 
•  large-scale interchange turbulence 

•  Directly observed the turbulent inward pinch, which drives centrally-
peaked density and temperature profiles 

•  Important consequence of the stationary profiles: 
Energy and particle confinement is set by SOL physics.  

•  Energy confinement is longer than particle confinement, making 
possible advanced fusion fuel cycles.  
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