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FNSF provides the environment to develop
database for fusion materials in action

 FNSF mission: Provide a continuous fusion nuclear environment
of copious neutrons, to develop experimental database on
nuclear-nonnuclear coupling phenomena in materials in
components for plasma-material interactions, tritium fuel cycle,
and power extraction.

 Wide time and size scales of synergistic phenomena: ps to year,
nm to meter, involving all phases of matter.

 R&D cycle: Test, discover, understand, improve / innovate solutions,
and retest, until experimental database for DEMO-capable
components are developed.

« Complement ITER objectives and prepare for CTF in ITER era:
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Example: fusion nuclear-nonnuclear coupling effects
involving plasma facing material and tritium retention

« W, a promising Plasma Facing Material
- Low H permeation / retention
- Low plasma erosion
- DEMO-relevant temperatures

 Worldwide R&D: Nano-composites;
Nano-structure alloy; PFC designs, etc.
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Example: neutron damage in refractory metals

Interstitials, vacancies,
clusters of those,
dislocation loops, voids,
dynamics of these

Hydrogenic retention

Thermal conductivity (in
particular for carbon based
materials)

Chemical composition (e.g.

transmutation)

Micro-structural changes
(e.g. swelling)

Mechanical properties (e.g.
DBTT, He embrittlement)
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»Suggest the need to test neutron irradiated samples up to 10 dpa at least.



Example: adding Be-W chemistry to the mix

requires an integrated testing environment

— enhanced W-sublimation / erosion?
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»How do high fluxes and thermal loads influence intermixing and alloying,
in presence of increasing neutron damage?



R&D and Capabilities required by this mission

Accompanying R&D: to increase Mean Time Between Failure (MTBF)
of test components

Development of qualified internal component options, including

 Test divertors, blankets, T breeders, FW, NBIl, RF launchers,
diagnostic systems, TF center post (for ST)

» Components to control plasma dynamics, H&CD, fueling, 1&C
* Instrumentation for these

FNSF Capabilities: fo increase duty factor and fluence, reduce Mean
Time to Replace or Repair (MTTR)

» Reliable plasma operation with limited disruption, ELM, and impact

* Remote handling (RH) of modularized test components

» Hot cell facilities and laboratories, pre- and post-test investigation
systems and tools.

» Device support structure and systems behind test modules and
shielding — long facility life and upgradability to CTF mission.




FNSF-ST, assessed to have good potential to provide the
facility capability required in progressive stages

*R,=13m, A=1.7 I-DD: 1xJET, verify plasma operation, PMI/PFC,
* H, £1.25, B/By < 0.75, q., = 4 neutronics, shielding, safety, RH system
H= " L] N=—=VY- 3 Cy| -

II-DT: 1xJET, verify FNS research capability:
. 2
JTF-avg < 4kAlcm PMI/PFC, tritium cycle, power extraction

* Mid-plane test area 2 10m? lI-DT: 2xJET, full FNS research, basis for CTF

 Outboard T breeder ~ 50m? IV-DT: 3xJET, “stretch” FNS & CTF research
Stage-Fuel I-DD 1-DT I-bT | IV-DT
Current, |, (MA) 4.2 4.2 6.7 8.4
Plasma pressure (MPa) 0.16 | 0.16 0.43 0.70
W, (MW/m?) 0.005 | 0.25 [ 1.0 2.0
Fusion gain Q 0.01 0.86 1.7 2.5
Fusion power (MW) 0.2 19 76 152
Tritium burn rate (g/yr) 0 <105 | <420 | <840
Field, B (T) 27 | 27 | 29 3.6
Safety factor, q 6.0 6.0 4.1 4.1
Toroidal beta, B; (%) 4.4 4.4 10.1 10.8
Normal beta, B, 2.1 2.1 3.3 3.5
Avg density, n, (102°/m3) 0.54 | 0.54 1.1 1.5
AvgionT, (keV) 7.7 7.6 10.2 11.8
Avg electron T, (keV) 4.2 4.3 5.7 7.2
BS current fraction 0.45 0.47 0.50 0.53
NBI H&CD power (MW) 26 22 44 61
NBI energy to core (kV) 120 120 235 330




Mid-plane test modules, NBl systems, RF launchers,
diagnostics are arranged for ready RH replacement
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FNSF internal components assembly/disassembly concept
support structure lifetime dose < 0.1 dpa enables staging




Ready replacements, shielded vacuum weld seals and

bi-directional sliding joint are proposed to allow RH

To reduce Mean Time to Replace (MTTR) and achieve 10% Duty Cycle
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Structural analysis of optimally designed center-post
(Arnie Lumsdaine, 28-3P-19)

Objective: minimize peak Von Mises stress by varying
radius and positions of cooling channels

Assumptions:

* Nuclear and Joule heating Initial Optimized

» Constant water flow

» Constant Copper thermal &
electrical conductivities

25 mm between channels
and to surface

Optimization approaches:

» Sequential quadratic

* Particle swarm

» Broyden, Fletcher, Goldfarb,
Shanno algarithm

* VisualDOC linked to ANSYS

Better with 8 roles of channels:

For W, =2MW/m?

 Peak stress reduced to 1/3 to
~100 MPa

» Peak A temp reduced to 60C




Extensive remote handling systems, including hot-cell
laboratories, will be required

Remote handling equipment for hot cell laboratories to enable
fusion nuclear sciences R&D
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To manage the risks, requisite R&D can be defined
addressing the FNSF features (STs & Tokamaks)

+ Solenoid-free plasma start up, using ECW/EBW, Helicity Injection (STs).

* Hot-lon H-Mode operational scenarios with strong tokamak database (STs
& Tokamaks).

« SOL-Divertor with improved configurations to limit heat fluxes <10 MW/m?,
and control fuel and impurities (extended divertor — MAST-U).

» Continuous, disruption-minimized, non-inductive plasma operation in
regimes removed from stability boundaries (STs & Tokamaks).

» Continuous Pl NBI (JET-like?) & 60 GHz gyrotrons (Tsukuba?)
« Single-turn TF coil center post engineering and fabrication (industry).

 Remote handling (RH) systems and modular internal components, to
minimize MTTR to achieve a duty factor of 10% (nuclear R&D facilities).

 RH-enabled maintenance and research hot-cells (nuclear R&D facilities).

* Low dissipation, low voltage, high current, dc power supply with stiff
control of current (HTSC based generators?).

* Nuclear grade R&D users’ facility infrastructure (national labs).

Accompanying FNS R&D Program to develop, design, instrument, and
operate all internal components & options, in concert with FNSF.




FNSF with accompanying R&D aim to carry out
cost & time effective fusion nuclear science R&D
for DEMO, in progressive stages
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