Fast Particle Issues and Action Items

R. Nazikian

FIRE Workshop, May 1-3, 2000 (PPPL, Princeton, NJ)

Single Particle Orbit and Loss in AT Regimes

Summary of recent work (White)

- » Analysis of alpha loss using guiding center (ORBIT) code with collisions
- » FIRE with q(0) \approx 3 has 6% prompt loss, 12 % loss at 50 ms($\approx\tau_s$)
- » Loss concentrated at midplane

Action Items

- » Calculate power density of prompt loss alphas on first wall using ORBIT and/or LORENTZ code
- » Need to benchmark loss predictions to experiment
 - Ripple experiments on JET (δ 16 -> δ 32), JFT-2M

- Non-perturbative Instabilities in FIRE for positive and reverse magnetic shear (Gorelenkov)
 - » Non-perturbative Alfvén eigenmodes relevant to FIRE
 - » High-N STability analysis applied to q(0)<1 and q(0)>1 reference plasmas
 - » q(0)<1 plasmas are unstable to low-n RTAEs
 internal redistribution possible
 - » q(0)>1 plasmas are always unstable to low-n RTAEs
 - modes strongest near q-min (as seen on TFTR)
 - internal redistribution possible

 Key issue is whether modes will be strong enough to significantly enhance loss

Action Items

- » Alpha simulation experiments needed on present devices
 High field side minority RF heating in AT regimes
- » Develop global low-n code for RTAE stability: NOVA-2
 - benchmark to NSTX, TFTR, DIII-D, ...
- » Develop non-linear simulation capability
 - M3D (G. Fu)
 - reproduce bursting, chirping modes seen in experiment
 - benchmark against saturation level observed on TFTR, DIII-D, ...
- » Update projections for Burning Plasma

Non-linear TAE Physics and Resonance Overlap

- For high-n modes, need to assess role of resonance overlap in burning plasma
- * Action Items
 - » Determine if TFTR experiments are a good example of resonance overlap
 - ORBIT analysis needed with multiple modes (White)
 - compare to Fokker-Planck-MHD simulations (Todo)
 - extrapolate to burning plasma

AT regimes with Alpha self-heating

- Production and sustainment of AT regimes with dominant electron heating
- R&D Needs
 - » Characterize formation condition of ITB in present devices
 - ECH plasmas on DIII-D with ITB in the electron channel
 - IBW physics and ITB formation in FTU
 - ITB formation in C-MOD with RF heated H-minority
 - Will enhancement persist if sawtooth is stabilized?
 - » Fluctuation diagnostics needed to assess role of turbulence and shear flow in the formation and evolution of these ITBs