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HIGH FIELD SIDE PELLET INJECTION ALLOWS EVALUATION
OF INTERNAL TRANSPORT BARRIERS WITH Te - Ti

2.7 mm Pellets - HFS 45” vs LFS
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New capability in ITB control

l HFS pellet injection yields deeper particle deposition than
LFS injection, consistant with theory

l Future work on ITB control and H-mode control with pellet



CONFINEMENT DOES NOT DEGRADE AT HIGH DENSITY
IN LOW q,, PUMPED DISCHARGES
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Summary and Conclusions of High
Density Experiments

l Densities up to 1.4xn GWY and HBSp-1.9 are obtained with
divertor pumping and gas fueling alone
* Pedestal densities up to 0.9 nGW observed
a Pumping seems necessary for maintaining high confinement
+ Best results obtained at low q and low power

l Good confinement is correlated with good fueling
efficiency
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Motivation for Improved Performance

l Magnetic fusion reactor

maintain high fusion power density (- p2B4)

l Steady-state 3 f,, = 1 (in tokamak)

increasing the bootstrap fraction means increasing q

- high q (= f,.,,‘“)

l Stability must be improved

* increase pN (= q)

l Must exceed ignition condition & maintain power balance during burn

(maintain  Pfusioploss  = Pd
* increase H (= q)

l For example: if a tokamak reactor plasma has q = 3, Pr,,H,,p = 5, and fbs = 40%,

to reach f,, = 100% at the same p would require PNHBI)P = 12.5 at q = 4.7.
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DIII-D Goal and Progress in 1999

A principal near-term goal of the present DIN-D research program
is a stationary plasma with P,,H,,,, 2 10, with no inductive current,
a relaxed loop voltage profile, and > 50% bootstrap current.

*O>

Advanced Tokamak
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STABILITY LIMIT IMPROVES WITH INTERNAL
TRANSPORT BARRIER WIDTH AND RADIUS

l Fixed shape, DND, q,, q 5.1, qO q 3.2, qmin q 2.2 based on a DIII-D discharge

l Hyperbolic tangent pressure representation

l Ideal II = 1, wall at ISa
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l Discharge preparation
to produce hot core with
hollow current profile

0 Confinement meets
reactor requirements

l p exceeds no-wall limit
- no reduction when

ELMS start
01.
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l Flat-top p limited by a
combination of high frequency
modes, RWMs,  and ELMS

0 Duration is many TE
- comparable to current

relaxation time



ADVANCED TOKAMAK DISCHARGE ON DIII-D SCALED TO
FIRE AT FIXED p, v AND B~(BT BUT SMALLER p*

FIRE has higher aspect ratio
than DIII-D and thus will have
lower safety factor and
bootstrap fraction

If current is reduced to
increase bootstrap fraction,
then density will exceed
the density limit
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BETA IS LIMITED IN MAGNITUDE AND
DURATION BY RESISTIVE WALL MODES

6B. measured bv saddle coils outside the veesel

0

0

Limiting modes have the
characteristics of resistive
wall modes: y w llzw

Rotational stabilization is difficult
to maintain
- Theoretical understanding of

drag mechanism needed

j Active feedback stabilization
is required

l RWM stabilization is a key issue
for RFP, ST, and spheromak
(FESAC goal #2)
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ACTIVE FEEDBACK STABILIZATION EXTENDS HIGH p DURATION
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PLASMA CURRENT IS WHAT MAKES TOKAMAKS GREAT

I
l Normalized current -

aBT
is relevant quantity

l Beta increases with normalized current regardless of beta limit

p’(&)(&)
l Confinement increases with normalized current

for DIII-D H-modes

l Thus, the ignition criteria Q is a strongly increasing function of normalized current
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NEOCLASSICAL TEARING MODE BETA LIMIT

Model for onset PN fitted to database for m/n q 312 NTM induced by sawteeth
* DIII-D, JET, and ASDEX-Upgrade (ELMy H, q95 Z 3, LSND)

* Seed island decreases faster with pi* than threshold

- Stabilizes at very low pi*, high S, i.e. ws&?$wthr&, c 1
* FIRE is predicted to be unstable at PN = 2.1-2.4

12

10

8

2 STABLE

ITEFi'FDR
0 I
0.00 0.05 0.10 0.15

v = Vi/&W,*

2.1

1.8

1.5

1.2



THE IGNITION CRITERIA Q RAPIDLY INCREASES
WITH NORMALIZED CURRENT (R,

FIXED TO FIRE VALUES)
BT AND &,

lo I, (MA)
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